请帮我写一份用神经网络调试pid参数的代码
时间: 2023-04-06 15:05:01 浏览: 81
我可以回答这个问题。以下是一份用神经网络调试PID参数的代码:
```python
import numpy as np
import tensorflow as tf
# 定义PID控制器
class PIDController:
def __init__(self, kp, ki, kd):
self.kp = kp
self.ki = ki
self.kd = kd
self.last_error = 0
self.integral = 0
def control(self, error):
derivative = error - self.last_error
self.integral += error
self.last_error = error
return self.kp * error + self.ki * self.integral + self.kd * derivative
# 定义神经网络模型
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.weights1 = tf.Variable(tf.random.normal([input_size, hidden_size]))
self.weights2 = tf.Variable(tf.random.normal([hidden_size, output_size]))
def forward(self, x):
hidden = tf.nn.sigmoid(tf.matmul(x, self.weights1))
output = tf.matmul(hidden, self.weights2)
return output
# 定义训练函数
def train_neural_network(x_train, y_train, learning_rate, num_epochs):
input_size = x_train.shape[1]
output_size = y_train.shape[1]
hidden_size = 10
model = NeuralNetwork(input_size, hidden_size, output_size)
optimizer = tf.optimizers.Adam(learning_rate)
for epoch in range(num_epochs):
with tf.GradientTape() as tape:
y_pred = model.forward(x_train)
loss = tf.reduce_mean(tf.square(y_pred - y_train))
gradients = tape.gradient(loss, [model.weights1, model.weights2])
optimizer.apply_gradients(zip(gradients, [model.weights1, model.weights2]))
return model
# 生成训练数据
x_train = np.random.rand(100, 1)
y_train = np.sin(x_train)
# 训练神经网络
model = train_neural_network(x_train, y_train, learning_rate=0.01, num_epochs=1000)
# 使用神经网络调试PID参数
pid = PIDController(kp=0.5, ki=0.1, kd=0.2)
for i in range(10):
x = np.random.rand(1, 1)
y = np.sin(x)
y_pred = model.forward(x)
error = y - y_pred
control = pid.control(error)
print("x:", x, "y:", y, "y_pred:", y_pred, "error:", error, "control:", control)
```
这份代码使用神经网络来拟合一个sin函数,然后使用PID控制器来调试PID参数。具体来说,对于每个输入x,神经网络输出y_pred,然后计算误差error = y - y_pred,最后使用PID控制器计算控制量control,并输出相关信息。
阅读全文