训练多分类器,如何使得每个分类器有相同的模型参数代码
时间: 2024-02-24 11:59:24 浏览: 50
为了让每个多分类器(例如使用softmax输出的神经网络)有相同的模型参数,你可以尝试以下步骤:
1. 定义一个函数来创建模型,该函数接受模型名称作为参数,并返回具有相同参数的多个模型实例。
```python
import torch.nn as nn
import torch.optim as optim
def create_model(model_name, num_classes):
if model_name == 'resnet':
model = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(512, num_classes)
)
elif model_name == 'densenet':
model = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(32, num_classes)
)
else:
raise ValueError(f"Unsupported model name: {model_name}")
return model
```
2. 创建多个模型实例,并共享它们的参数。
```python
model_names = ['resnet', 'densenet']
num_classes = 10
models = [create_model(model_name, num_classes) for model_name in model_names]
# Share parameters
for i in range(1, len(models)):
models[i].load_state_dict(models[0].state_dict())
```
在这个例子中,我们创建了两个模型实例,并共享它们的参数。我们首先使用 `create_model()` 函数创建模型实例,然后通过 `load_state_dict()` 方法将第一个模型的参数加载到其他模型中。这样,所有模型都具有相同的参数。
注意,这里假设多个模型的结构相同,只是名称不同。如果不是,你需要对每个模型进行适当的调整。
阅读全文