def get_style_model_and_losses(cnn, style_img, content_img, style_weight=1000, content_weight=1, content_layers=content_layers_default, style_layers=style_layers_default): cnn = copy.deepcopy(cnn) # just in order to have an iterable access to or list of content/syle # losses content_losses = [] style_losses = [] model = nn.Sequential() # the new Sequential module network gram = GramMatrix() # we need a gram module in order to compute style targets # move these modules to the GPU if possible: if use_cuda: model = model.cuda() gram = gram.cuda()
时间: 2023-12-20 07:03:27 浏览: 85
这是一个 PyTorch 中的函数,用于获取风格迁移模型和计算内容和风格损失。具体来说,它首先复制一个传入的卷积神经网络(cnn),然后将其作为一个新的 Sequential 模块网络(model)。接下来,它定义了一个 GramMatrix 模块(用于计算风格目标),并将其移动到 GPU 上(如果可用)。最后,它返回内容和风格损失列表以及新的模型网络。其中,参数 style_weight 和 content_weight 控制了风格和内容损失的相对权重,而 content_layers 和 style_layers 则指定了计算内容和风格损失所用的网络层。
相关问题
def get_input_param_optimizer(input_img): # this line to show that input is a parameter that requires a gradient input_param = nn.Parameter(input_img.data) optimizer = optim.LBFGS([input_param]) return input_param, optimizer def run_style_transfer(cnn, content_img, style_img, input_img, num_steps=300, style_weight=1000, content_weight=1): """Run the style transfer.""" print('Building the style transfer model..') model, style_losses, content_losses = get_style_model_and_losses(cnn, style_img, content_img, style_weight, content_weight) input_param, optimizer = get_input_param_optimizer(input_img) print('Optimizing..') run = [0] while run[0] <= num_steps: def closure(): # correct the values of updated input image input_param.data.clamp_(0, 1) optimizer.zero_grad() model(input_param) style_score = 0 content_score = 0 for sl in style_losses: style_score += sl.backward() for cl in content_losses: content_score += cl.backward() run[0] += 1 if run[0] % 50 == 0: print("run {}:".format(run)) print('Style Loss : {:4f} Content Loss: {:4f}'.format( style_score.data[0], content_score.data[0])) print() return style_score + content_score optimizer.step(closure) # a last correction... input_param.data.clamp_(0, 1) return input_param.data
这是一个用于运行风格迁移的 Python 代码。它使用 PyTorch 框架来实现。具体来说,它定义了一个函数 `run_style_transfer`,该函数接受一些参数:`cnn`,`content_img`,`style_img`,`input_img`,`num_steps`,`style_weight` 和 `content_weight`。其中,`cnn` 是卷积神经网络,`content_img` 是内容图像,`style_img` 是风格图像,`input_img` 是输入图像(即风格迁移生成的图像),`num_steps` 是进行优化的迭代次数,`style_weight` 和 `content_weight` 是用于计算损失的权重参数。
在 `run_style_transfer` 函数中,首先调用了 `get_style_model_and_losses` 函数来获取风格迁移模型,并拆分出样式损失和内容损失。然后,调用 `get_input_param_optimizer` 函数来获取输入图像参数和优化器。接下来,使用 LBFGS 优化器来最小化样式损失和内容损失的加权和,以生成最终的输出图像。
在 `closure` 函数中,对输入图像进行修正,并计算样式损失和内容损失。最后,将两者相加,返回优化器的损失值。在每 50 个迭代步骤之后,输出当前的样式损失和内容损失。
最后,将生成的图像进行最后一次修正,将其像素值限制在 0 到 1 之间,并返回最终的输出图像。
阅读全文