基于Keil+c51单片机和74hc245a和74ls154a实现16×16滚动显示姓名学号方法及代码

时间: 2023-11-22 19:52:08 浏览: 54
首先,我们需要连接74hc245a和74ls154a芯片,将其作为16×16的LED点阵的控制器。其中,74hc245a是用来扩展输出端口的,74ls154a是用来进行地址选择的。 接下来,我们需要编写程序来控制LED点阵的显示。以下是基于Keil+c51单片机的16×16滚动显示姓名学号的代码: ```c #include<reg52.h> #include<intrins.h> #define uint unsigned int #define uchar unsigned char uchar code name[]={"xxx"}; // 姓名 uchar code id[]={"1234567"}; // 学号 uchar code table[]={ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 第一行 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 第二行 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 第三行 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // 第四行 }; void delay(uint i) { while(i--); } void write_data(uchar dat) { uchar i; for(i=0;i<8;i++) { if(dat&0x80) P1=0x01; // 数据线高电平 else P1=0x00; // 数据线低电平 dat<<=1; P3|=0x04; // 时钟线上升沿 _nop_(); _nop_(); P3&=0xfb; // 时钟线下降沿 _nop_(); _nop_(); } } void write_address(uchar addr) { uchar i; for(i=0;i<4;i++) { if(addr&0x80) P1=0x01; // 地址线高电平 else P1=0x00; // 地址线低电平 addr<<=1; P3|=0x08; // 字选线上升沿 _nop_(); _nop_(); P3&=0xf7; // 字选线下降沿 _nop_(); _nop_(); } } void main() { uchar i, j, k; while(1) { for(i=0;i<16;i++) { for(j=0;j<4;j++) { for(k=0;k<16;k++) { write_address(j*16+k); // 选择地址 write_data(table[i*16+k]); // 写入数据 } } delay(400); } for(i=0;i<16;i++) { for(j=0;j<4;j++) { for(k=0;k<16;k++) { write_address(j*16+k); // 选择地址 write_data(table[i*16+k+16]); // 写入数据 } } delay(400); } } } ``` 在代码中,我们首先定义了姓名和学号的数组,并且定义了一个16×16的点阵表,用于存储LED点阵的显示信息。 在`write_data`函数中,我们通过将数据线设置为高电平或低电平来控制LED点阵每个LED的亮灭状态,再通过时钟线上升沿和下降沿来控制数据传输的时序。 在`write_address`函数中,我们通过将地址线设置为高电平或低电平来选择LED点阵的每个LED,再通过字选线上升沿和下降沿来控制地址选择的时序。 在`main`函数中,我们通过循环调用`write_address`和`write_data`函数来实现LED点阵的滚动显示效果。其中,通过调整延时时间可以控制滚动速度。 需要注意的是,以上代码只是提供了一个基本的思路,具体的实现还需要根据硬件电路和LED点阵的具体规格进行调整。

相关推荐

最新推荐

recommend-type

直流电机控制Keil c51源代码

这个 Keil c51 源代码是一个完整的直流电机控制系统的实现,它包括了定时器的初始化、PWM 的设置、定时器中断处理和主函数等多个部分。通过对这个代码的分析和解释,我们可以更好地理解直流电机控制系统的实现原理和...
recommend-type

STM8S 硬件SPI驱动74HC595

STM8S 硬件SPI驱动74HC595是基于STM8S微控制器的硬件SPI驱动74HC595芯片的实现。该驱动程序使用STM8S的硬件SPI接口与74HC595芯片进行通信,实现对8位LED数码管的控制。 知识点1:STM8S硬件SPI接口 STM8S的硬件SPI...
recommend-type

keil V4中,中文注释代码出现乱码的解决方法

在Keil uVision V4这款广泛应用于单片机开发的集成开发环境中,有时用户会遇到一个令人困扰的问题:中文注释显示为乱码。这个问题在更新版本的Keil软件中时有发生,使得中文注释变得难以阅读,严重影响了开发者的...
recommend-type

Keil c51调试总结

在进行Keil C51编程时,遇到这些警告和错误需要仔细分析代码,理解其背后的含义,然后针对性地修改代码或调整编译设置。良好的编程习惯,如清晰的注释、适当的函数封装以及对内存管理的深入理解,都将有助于减少这类...
recommend-type

基于51单片机的十字路口交通灯控制系统设计(含源码及仿真图)

本文探讨了基于51单片机的十字路口交通灯控制系统的设计与实现,系统包含了源代码和仿真图。设计中,东西、南北方向各设有绿、黄、红指示灯及两个显示数码管,以交替控制交通流。每个方向的基本放行时间为25秒,黄灯...
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。