‘ precision recall f1-score support 0 0.90 0.91 0.91 10762 1 0.85 0.91 0.88 9339 2 0.86 0.42 0.57 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.87 0.75 0.78 21729 weighted avg 0.88 0.88 0.87 21729 samples avg 0.88 0.88 0.88 21729 precision recall f1-score support 0 0.91 0.91 0.91 10762 1 0.85 0.92 0.89 9339 2 0.87 0.46 0.60 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.88 0.77 0.80 21729 weighted avg 0.88 0.88 0.88 21729 samples avg 0.88 0.88 0.88 21729 precision recall f1-score support 0 0.96 0.97 0.97 10769 1 0.95 0.95 0.95 9361 2 0.89 0.82 0.85 1599 micro avg 0.95 0.95 0.95 21729 macro avg 0.94 0.91 0.92 21729 weighted avg 0.95 0.95 0.95 21729 samples avg 0.95 0.95 0.95 21729 precision recall f1-score support 0 0.96 0.97 0.97 10673 1 0.96 0.95 0.95 9443 2 0.88 0.83 0.86 1613 micro avg 0.95 0.95 0.95 21729 macro avg 0.93 0.92 0.92 21729 weighted avg 0.95 0.95 0.95 21729 samples avg 0.95 0.95 0.95 21729‘是一个字符串,怎么把求得其中的分类报告的均值生成形式不变的新的分类报告python
时间: 2024-02-10 22:07:25 浏览: 151
可以使用sklearn.metrics.classification_report函数来生成新的分类报告,将原始字符串作为函数的输入,然后指定需要计算的均值类型(例如"macro avg"、"weighted avg"等),并将输出结果保存为字符串形式,代码示例如下:
```python
from sklearn.metrics import classification_report
# 原始分类报告字符串
report_str = "precision recall f1-score support 0 0.90 0.91 0.91 10762 1 0.85 0.91 0.88 9339 2 0.86 0.42 0.57 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.87 0.75 0.78 21729 weighted avg 0.88 0.88 0.87 21729 samples avg 0.88 0.88 0.88 21729"
# 计算macro avg均值的新分类报告
new_report_str = classification_report(report_str, output_dict=False, target_names=None, digits=2, sample_weight=None, labels=None, zero_division='warn', support=None)
print(new_report_str)
```
将原始分类报告字符串作为classification_report函数的输入,设置output_dict=False表示输出字符串形式的分类报告,然后指定需要计算的均值类型(例如"macro avg"、"weighted avg"等),最后将计算结果保存为字符串形式的新分类报告。
阅读全文