def boundary(pop, lb, ub): # 防止粒子跳出范围,除学习率之外 其他的都是整数 pop = [int(pop[i]) if i > 0 else pop[i] for i in range(len(lb))] for i in range(len(lb)): if pop[i] > ub[i] or pop[i] < lb[i]: if i == 0: pop[i] = (ub[i] - lb[i]) * np.random.rand() + lb[i] else: pop[i] = np.random.randint(lb[i], ub[i]) return pop
时间: 2023-06-23 15:08:50 浏览: 175
这是一个防止粒子跳出范围的函数,输入参数包括pop(一个列表,代表一个粒子的位置)、lb(一个列表,代表每个位置的下限)、ub(一个列表,代表每个位置的上限)。该函数会将pop中除了第一个元素(学习率)以外的其他元素转换成整数,并且如果pop中的某个元素超出了下限或上限,则将其随机移动到下限和上限之间。如果pop中的第一个元素超出了下限或上限,则将其随机移动到下限和上限之间。最后返回pop。
相关问题
import tensorflow as tfdef cross_entropy_loss(y_true, y_pred): # 计算交叉熵损失 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred) return tf.reduce_mean(cross_entropy)def boundary_loss(y_true, y_pred): # 计算边界损失 boundary_filter = tf.constant([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=tf.float32) y_true_boundary = tf.nn.conv2d(y_true, boundary_filter, strides=[1, 1, 1, 1], padding='SAME') y_pred_boundary = tf.nn.conv2d(y_pred, boundary_filter, strides=[1, 1, 1, 1], padding='SAME') boundary_loss = tf.reduce_mean(tf.square(y_true_boundary - y_pred_boundary)) return boundary_lossdef total_loss(y_true, y_pred): # 总损失函数 = 交叉熵损失 + 边界损失 return cross_entropy_loss(y_true, y_pred) + 0.5 * boundary_loss(y_true, y_pred)# 构建模型model = ...# 编译模型model.compile(optimizer='adam', loss=total_loss, metrics=['accuracy'])
可以将这部分代码转化为PyTorch,转化后的代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
def cross_entropy_loss(y_true, y_pred):
# 计算交叉熵损失
cross_entropy = nn.CrossEntropyLoss()(y_pred, y_true)
return cross_entropy
def boundary_loss(y_true, y_pred):
# 计算边界损失
boundary_filter = torch.tensor([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=torch.float32)
boundary_filter = boundary_filter.view(1, 1, 3, 3)
y_true_boundary = F.conv2d(y_true, boundary_filter, padding=1)
y_pred_boundary = F.conv2d(y_pred, boundary_filter, padding=1)
boundary_loss = F.mse_loss(y_true_boundary, y_pred_boundary)
return boundary_loss
def total_loss(y_true, y_pred):
# 总损失函数 = 交叉熵损失 + 边界损失
return cross_entropy_loss(y_true, y_pred) + 0.5 * boundary_loss(y_true, y_pred)
# 构建模型
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(32*8*8, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32*8*8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Model()
# 编译模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_fn = total_loss
metrics = ['accuracy']
解释代码def calculate_n(x: float, y: float, boundary: int): n = (boundary - x) / y if n < 0: return 0 else: return int(n) + 1 def data_offset(x, iter_num, range: list): assert len(range) == 2, "range的长度应为2" assert range[0] < range[1], "range的第0项应小于第1项" if x < range[1] and x > range[0]: if iter_num != 0: if iter_num > 0: iter_time = calculate_n(x, iter_num, range[1]) elif iter_num < 0: iter_time = calculate_n(x, iter_num, range[0]) x = x + iter_num * iter_time return x else: return x else: return x
这段代码定义了两个函数,第一个函数calculate_n(x,y,boundary)用于计算x到边界boundary需要进行多少次y的迭代,如果计算出来需要迭代次数小于0则返回0,否则强制转换为整数返回。第二个函数data_offset(x,iter_num,range)有三个参数x,iter_num和range。当x在range范围内时,如果iter_num不为0,则根据iter_num的正负情况调用calculate_n函数计算出需要迭代的次数,然后乘以iter_num,最后将x加上这个结果返回。如果iter_num为0,则直接返回x。如果x不在range范围内,则直接返回x。
阅读全文