基于vit图像识别代码
时间: 2023-05-24 15:04:40 浏览: 208
T2T-ViT
对于vit图像识别代码,一般分为以下几个步骤:数据准备、模型构建、模型训练和模型评估。具体实现过程可以参考以下代码:
1. 数据准备
```
from torchvision import transforms, datasets
data_transform = transforms.Compose([
transforms.Resize(224), # 缩放到指定大小
transforms.CenterCrop(224), # 居中裁剪
transforms.ToTensor(), # 转化为张量
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # 标准化
])
train_dataset = datasets.ImageFolder(root='train_path', transform=data_transform)
val_dataset = datasets.ImageFolder(root='val_path', transform=data_transform)
```
2. 模型构建
```
import torch.nn as nn
class ViT(nn.Module):
def __init__(self, img_size, patch_size, num_classes, dim):
super().__init__()
self.patch_size = patch_size
num_patches = (img_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2 # 输入的通道数,3表示RGB通道
self.class_embed = nn.Parameter(torch.randn(1, 1, dim))
self.patch_embed = nn.Linear(patch_dim, dim)
self.pos_embed = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = nn.TransformerEncoderLayer(d_model=dim, nhead=8)
self.linear = nn.Linear(dim, num_classes)
def forward(self, x):
batch_size, _, _, _ = x.shape
patches = x.unfold(2, self.patch_size, self.patch_size).unfold(3, self.patch_size, self.patch_size)
patches = patches.flatten(2).transpose(1, 2)
patch_embed = self.patch_embed(patches)
pos_embed = self.pos_embed[:, :(patches.size(1) + 1)]
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
x = torch.cat([cls_tokens, patch_embed], dim=1)
x += pos_embed
x = self.transformer(x)
x = x.mean(dim=1)
x = self.linear(x)
return x
```
3. 模型训练
```
import torch.optim as optim
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = ViT(img_size=224, patch_size=16, num_classes=10, dim=512).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
num_epochs = 50
for epoch in range(num_epochs):
train_loss = 0.0
train_acc = 0.0
model.train()
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss /= len(train_loader.dataset)
train_acc = train_acc.float() / len(train_loader.dataset)
val_loss = 0.0
val_acc = 0.0
model.eval()
with torch.no_grad():
for inputs, labels in val_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
val_acc += torch.sum(preds == labels.data)
val_loss /= len(val_loader.dataset)
val_acc = val_acc.float() / len(val_loader.dataset)
scheduler.step()
print('[Epoch %d/%d] Train Loss: %.4f, Train Acc: %.4f, Val Loss: %.4f, Val Acc: %.4f' \
% (epoch + 1, num_epochs, train_loss, train_acc, val_loss, val_acc))
```
4. 模型评估
```
correct = 0
total = 0
model.eval()
with torch.no_grad():
for data in test_loader:
images, labels = data
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
以上代码仅为参考,实际实现时需要根据具体的需求进行相应的修改和调整。
阅读全文