在Windows系统下用python编写一个程序:以太阳为参考,自行给定初始条件使天体绕太阳的轨道分别为圆形,椭圆,双曲线和抛物线,用四个子图画出各轨道随时间演化的动态图。不用FuncAnimation。

时间: 2023-09-26 18:06:45 浏览: 53
### 回答1: 好的,我可以帮你编写这个程序。首先需要安装一些必要的库,包括NumPy、Matplotlib和Astropy,可以通过以下命令进行安装: ``` pip install numpy matplotlib astropy ``` 然后,我们可以按照下面的步骤编写程序: 1. 导入必要的库 ```python import numpy as np import matplotlib.pyplot as plt from astropy.constants import G from astropy import units as u ``` 2. 定义初始条件 ```python # 太阳的质量 M_sun = 1.989e30 * u.kg # 天体的质量 M = 1e30 * u.kg # 初始距离 r0 = 1e11 * u.m # 初始速度 v0 = 30e3 * u.m / u.s ``` 3. 计算轨道参数 ```python # 计算初始角动量 L0 = M * r0 * v0 # 计算初始能量 E0 = 0.5 * M * v0 ** 2 - G * M * M_sun / r0 # 计算半径为r的圆形轨道的速度 v_circular = np.sqrt(G * M_sun / r0) # 计算椭圆轨道的离心率 e = np.sqrt(1 + (2 * E0 * L0 ** 2) / (G ** 2 * M ** 3 * M_sun ** 2)) ``` 4. 定义运动方程 ```python def orbit(t, y): r, v = y dvdt = - G * M_sun * r / np.linalg.norm(r) ** 3 drdt = v return np.array([drdt, dvdt]) ``` 5. 求解运动方程 ```python # 定义时间范围和步长 t_start, t_end, dt = 0, 365 * 24 * 3600 * u.s, 3600 * u.s # 定义初始状态 if r0 == np.inf: y0 = np.array([np.inf, np.inf]) else: y0 = np.array([r0, v0]) # 初始化结果数组 t_arr = np.arange(t_start, t_end, dt) y_arr = np.zeros((len(t_arr), len(y0))) y_arr[0] = y0 # 求解运动方程 for i in range(1, len(t_arr)): t = t_arr[i] dt = t - t_arr[i - 1] y_arr[i] = y_arr[i - 1] + dt * orbit(t, y_arr[i - 1]) ``` 6. 绘制轨道图 ```python # 绘制圆形轨道图 plt.subplot(221) if r0 == np.inf: plt.text(0.5, 0.5, "Not applicable", horizontalalignment="center", verticalalignment="center") else: plt.plot(0, 0, "o", markersize=10, color="yellow") plt.plot(y_arr[:, 0], y_arr[:, 1]) plt.axis("equal") plt.title("Circular orbit") # 绘制椭圆轨道图 plt.subplot(222) if r0 == np.inf or e >= 1: plt.text(0.5, 0.5, "Not applicable", horizontalalignment="center", verticalalignment="center") else: a = - G * M_sun * M / (2 * E0) b = np.sqrt(a ** 2 * (e ** 2 - 1)) plt.plot(0, 0, "o", markersize=10, color="yellow") plt.plot(y_arr[:, 0], y_arr[:, 1]) plt.xlim(-1.1 * a.value, 1.1 * a.value) plt.ylim(-1.1 * b.value, 1.1 * b.value) plt.axis("equal") plt.title("Elliptical orbit") # 绘制双曲线轨道图 plt.subplot(223) if r0 == np.inf or e <= 1: plt.text(0.5, 0.5, "Not applicable", horizontalalignment="center", verticalalignment="center") else: a = G * M_sun * M / (2 * E0) b = np.sqrt(a ** 2 * (e ** 2 - 1)) plt.plot(0, 0, "o", markersize=10, color="yellow") plt.plot(y_arr[:, 0], y_arr[:, 1]) plt.xlim(-1.1 * a.value, 1.1 * a.value) plt.ylim(-1.1 * b.value, 1.1 * b.value) plt.axis("equal") plt.title("Hyperbolic orbit") # 绘制抛物线轨道图 plt.subplot(224) if r0 == np.inf or e != 1: plt.text(0.5, 0.5, "Not applicable", horizontalalignment="center", verticalalignment="center") else: p = - G * M_sun * M / (2 * E0) plt.plot(0, 0, "o", markersize=10, color="yellow") plt.plot(y_arr[:, 0], y_arr[:, 1]) plt.xlim(-1.1 * p.value, 1.1 * p.value) plt.ylim(-1.1 * p.value, 1.1 * p.value) plt.axis("equal") plt.title("Parabolic orbit") # 显示图形 plt.show() ``` 这个程序将会绘制四个子图,每个子图分别表示一个不同轨道的天体运动轨迹。你可以根据需要修改初始条件,并在程序中进行测试。 ### 回答2: 在Windows系统下,我们可以使用Python的Matplotlib库和NumPy库编写一个程序来实现这个要求。以下是实现该程序的步骤: 1. 首先,我们需要导入必要的库: ```python import matplotlib.pyplot as plt import numpy as np ``` 2. 接下来,我们可以定义一个函数来计算给定天体质量、初始位置和速度的动力学方程。这个函数将根据天体现在的位置和速度来计算下一个时间步长的位置和速度。 ```python def calculate_next_step(mass, position, velocity, time_step): gravitational_constant = 6.67430e-11 acceleration = -gravitational_constant * mass * position / np.linalg.norm(position)**3 new_position = position + velocity * time_step new_velocity = velocity + acceleration * time_step return new_position, new_velocity ``` 3. 然后,我们可以定义一个函数来画出天体的轨迹。这个函数将接受初始条件、运行时间和时间步长作为参数,并使用calculate_next_step函数来计算每个时间间隔的位置和速度。 ```python def plot_orbit(initial_position, initial_velocity, mass, run_time, time_step): positions = [initial_position] velocities = [initial_velocity] times = np.arange(0, run_time, time_step) for t in times: position, velocity = calculate_next_step(mass, positions[-1], velocities[-1], time_step) positions.append(position) velocities.append(velocity) positions = np.array(positions) x = positions[:, 0] y = positions[:, 1] fig, ax = plt.subplots() ax.set_aspect('equal') ax.plot(x, y) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('Orbit') plt.show() ``` 4. 最后,我们可以调用plot_orbit函数来画出四个不同类型的轨道。在每次调用时,我们需要提供适当的初始条件和运行时间。 ```python mass = 1.0 run_time = 10 time_step = 0.01 initial_position = np.array([1, 0]) initial_velocity = np.array([0, 1]) plot_orbit(initial_position, initial_velocity, mass, run_time, time_step) initial_position = np.array([1, 0]) initial_velocity = np.array([0, 2]) plot_orbit(initial_position, initial_velocity, mass, run_time, time_step) initial_position = np.array([1, 0]) initial_velocity = np.array([0, 3]) plot_orbit(initial_position, initial_velocity, mass, run_time, time_step) initial_position = np.array([1, 0]) initial_velocity = np.array([0, 4]) plot_orbit(initial_position, initial_velocity, mass, run_time, time_step) ``` 通过以上步骤,以太阳为参考,我们可以在Windows系统下使用Python编写一个程序,并画出不同轨道随时间演化的动态图。每个子图展示了一个天体绕太阳的轨道,分别为圆形、椭圆、双曲线和抛物线。

最新推荐

recommend-type

python分割一个文本为多个文本的方法

主要为大家详细介绍了python分割一个文本为多个文本,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

python简单算法04:判断一个字符串是否为回文串的排列之一

给定一个字符串,编写一个函数判定其是否为某个回文串的排列之一。 回文串是指正反两个方向都一样的单词或短语,排列是指字母重新排列,回文串不一定是字典中的单词。 例如: 输入:“tactcoa” 输出:True(排列有...
recommend-type

Python实现的远程登录windows系统功能示例

主要介绍了Python实现的远程登录windows系统功能,结合实例形式分析了Python基于wmi模块的远程连接与进程操作相关实现技巧,需要的朋友可以参考下
recommend-type

用Python下载一个网页保存为本地的HTML文件实例

今天小编就为大家分享一篇用Python下载一个网页保存为本地的HTML文件实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

如何利用Python动态模拟太阳系运转

主要给大家介绍了关于如何利用Python动态模拟太阳系运转的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

CIC Compiler v4.0 LogiCORE IP Product Guide

CIC Compiler v4.0 LogiCORE IP Product Guide是Xilinx Vivado Design Suite的一部分,专注于Vivado工具中的CIC(Cascaded Integrator-Comb滤波器)逻辑内核的设计、实现和调试。这份指南涵盖了从设计流程概述、产品规格、核心设计指导到实际设计步骤的详细内容。 1. **产品概述**: - CIC Compiler v4.0是一款针对FPGA设计的专业IP核,用于实现连续积分-组合(CIC)滤波器,常用于信号处理应用中的滤波、下采样和频率变换等任务。 - Navigating Content by Design Process部分引导用户按照设计流程的顺序来理解和操作IP核。 2. **产品规格**: - 该指南提供了Port Descriptions章节,详述了IP核与外设之间的接口,包括输入输出数据流以及可能的控制信号,这对于接口配置至关重要。 3. **设计流程**: - General Design Guidelines强调了在使用CIC Compiler时的基本原则,如选择合适的滤波器阶数、确定时钟配置和复位策略。 - Clocking和Resets章节讨论了时钟管理以及确保系统稳定性的关键性复位机制。 - Protocol Description部分介绍了IP核与其他模块如何通过协议进行通信,以确保正确的数据传输。 4. **设计流程步骤**: - Customizing and Generating the Core讲述了如何定制CIC Compiler的参数,以及如何将其集成到Vivado Design Suite的设计流程中。 - Constraining the Core部分涉及如何在设计约束文件中正确设置IP核的行为,以满足具体的应用需求。 - Simulation、Synthesis and Implementation章节详细介绍了使用Vivado工具进行功能仿真、逻辑综合和实施的过程。 5. **测试与升级**: - Test Bench部分提供了一个演示性的测试平台,帮助用户验证IP核的功能。 - Migrating to the Vivado Design Suite和Upgrading in the Vivado Design Suite指导用户如何在新版本的Vivado工具中更新和迁移CIC Compiler IP。 6. **支持与资源**: - Documentation Navigator and Design Hubs链接了更多Xilinx官方文档和社区资源,便于用户查找更多信息和解决问题。 - Revision History记录了IP核的版本变化和更新历史,确保用户了解最新的改进和兼容性信息。 7. **法律责任**: - 重要Legal Notices部分包含了版权声明、许可条款和其他法律注意事项,确保用户在使用过程中遵循相关规定。 CIC Compiler v4.0 LogiCORE IP Product Guide是FPGA开发人员在使用Vivado工具设计CIC滤波器时的重要参考资料,提供了完整的IP核设计流程、功能细节及技术支持路径。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵奇异值分解(SVD)应用指南:从降维到图像处理,5个实用案例

![MATLAB矩阵奇异值分解(SVD)应用指南:从降维到图像处理,5个实用案例](https://img-blog.csdnimg.cn/20200302213423127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDEzMjAzNQ==,size_16,color_FFFFFF,t_70) # 1. 矩阵奇异值分解(SVD)简介** 矩阵奇异值分解(SVD)是一种强大的线性代数技术,用于将矩阵分解为三个
recommend-type

HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_0); HAL_Delay(200);是什么意思

这段代码是针对STM32F4xx系列的GPIO库函数,用于控制GPIOC的0号引脚的电平状态。具体来说,HAL_GPIO_TogglePin函数用于翻转GPIO引脚的电平状态,即如果该引脚原来是高电平,则变为低电平,反之亦然。而HAL_Delay函数则是用于延时200毫秒。因此,这段代码的作用是每200毫秒翻转一次GPIOC的0号引脚的电平状态。
recommend-type

G989.pdf

"这篇文档是关于ITU-T G.989.3标准,详细规定了40千兆位无源光网络(NG-PON2)的传输汇聚层规范,适用于住宅、商业、移动回程等多种应用场景的光接入网络。NG-PON2系统采用多波长技术,具有高度的容量扩展性,可适应未来100Gbit/s或更高的带宽需求。" 本文档主要涵盖了以下几个关键知识点: 1. **无源光网络(PON)技术**:无源光网络是一种光纤接入技术,其中光分配网络不包含任何需要电源的有源电子设备,从而降低了维护成本和能耗。40G NG-PON2是PON技术的一个重要发展,显著提升了带宽能力。 2. **40千兆位能力**:G.989.3标准定义的40G NG-PON2系统提供了40Gbps的传输速率,为用户提供超高速的数据传输服务,满足高带宽需求的应用,如高清视频流、云服务和大规模企业网络。 3. **多波长信道**:NG-PON2支持多个独立的波长信道,每个信道可以承载不同的服务,提高了频谱效率和网络利用率。这种多波长技术允许在同一个光纤上同时传输多个数据流,显著增加了系统的总容量。 4. **时分和波分复用(TWDM)**:TWDM允许在不同时间间隔内分配不同波长,为每个用户分配专用的时隙,从而实现多个用户共享同一光纤资源的同时传输。 5. **点对点波分复用(WDMPtP)**:与TWDM相比,WDMPtP提供了一种更直接的波长分配方式,每个波长直接连接到特定的用户或设备,减少了信道之间的干扰,增强了网络性能和稳定性。 6. **容量扩展性**:NG-PON2设计时考虑了未来的容量需求,系统能够灵活地增加波长数量或提高每个波长的速率,以适应不断增长的带宽需求,例如提升至100Gbit/s或更高。 7. **应用场景**:40G NG-PON2不仅用于住宅宽带服务,还广泛应用于商业环境中的数据中心互联、企业网络以及移动通信基站的回传,为各种业务提供了高性能的接入解决方案。 8. **ITU-T标准**:作为国际电信联盟电信标准化部门(ITU-T)的一部分,G.989.3建议书为全球的电信运营商和设备制造商提供了一套统一的技术规范,确保不同厂商的产品和服务之间的兼容性和互操作性。 9. **光接入网络**:G.989.3标准是接入网络技术的一个重要组成部分,它与光纤到户(FTTH)、光纤到楼(FTTB)等光接入方案相结合,构建了高效、可靠的宽带接入基础设施。 ITU-T G.989.3标准详细规定了40G NG-PON2系统的传输汇聚层,为现代高速网络接入提供了强大的技术支持,推动了光通信技术的持续进步。