self attention gan 的全部代码,包括数据载入、模型代码、训练代码以及测试代码

时间: 2023-06-12 09:08:04 浏览: 96
ZIP

GAN系列的代码,包含各种GAN结构

以下是一个简单的 Self-Attention GAN 的代码,包括数据载入、模型、训练和测试代码。 首先,我们需要导入必要的库: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets from torch.utils.data import DataLoader ``` 接下来,我们需要定义一些超参数: ```python batch_size = 128 image_size = 64 nz = 100 ngf = 64 ndf = 64 num_epochs = 5 lr = 0.0002 beta1 = 0.5 ngpu = 1 ``` 然后,我们需要定义数据载入器: ```python dataset = datasets.ImageFolder(root='data', transform=transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4) ``` 接下来,我们需要定义生成器和判别器: ```python class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(3, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input) ``` 接下来,我们需要初始化生成器和判别器: ```python device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") netG = Generator().to(device) netD = Discriminator().to(device) if (device.type == 'cuda') and (ngpu > 1): netG = nn.DataParallel(netG, list(range(ngpu))) netD = nn.DataParallel(netD, list(range(ngpu))) ``` 然后,我们需要定义损失函数和优化器: ```python criterion = nn.BCELoss() fixed_noise = torch.randn(64, nz, 1, 1, device=device) real_label = 1 fake_label = 0 optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) ``` 最后,我们可以开始训练模型: ```python for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): netD.zero_grad() real_cpu = data[0].to(device) b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, device=device) output = netD(real_cpu).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() netG.zero_grad() label.fill_(real_label) output = netD(fake).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) if (epoch == 0) and (i == 0): torchvision.utils.save_image(real_cpu, 'real_samples.png', normalize=True) if i == len(dataloader) - 1: with torch.no_grad(): fake = netG(fixed_noise).detach().cpu() torchvision.utils.save_image(fake, 'fake_samples_epoch_%03d.png' % epoch, normalize=True) ``` 测试代码: ```python import matplotlib.pyplot as plt import numpy as np def show_generated_img_all(): n_images=5 rows = 1 cols = 5 noise = torch.randn(n_images, nz, 1, 1).to(device) fake_images = netG(noise) fig, axes = plt.subplots(rows, cols, figsize=(15,5)) for i in range(rows): for j in range(cols): idx = i*cols+j axes[j].imshow(np.transpose(fake_images[idx].detach().cpu().numpy(), (1,2,0))) axes[j].axis('off') plt.show() show_generated_img_all() ``` 以上就是一个简单的 Self-Attention GAN 的代码。其中,数据载入器可以根据自己的数据集进行修改,超参数也可以根据需要进行调整。
阅读全文

相关推荐

最新推荐

recommend-type

软件开发代码规范 C#版本

软件开发代码规范 C#版本 作为一份详细的代码规范指南,本文档提供了关于C#代码开发的规范指南,涵盖了标识符命名规范、注释规范、排版规范、常用标识符等多个方面的内容。本文档旨在指导团队开发和代码走查,帮助...
recommend-type

python实现感知机线性分类模型示例代码

感知机(Perceptron)是机器学习领域中最基础的算法之一,它是一种线性二分类模型,用于处理线性可分的数据集。感知机的工作原理是寻找一个超平面,能够将数据集中的两类样本分开。在二维空间中,这个超平面就是一个...
recommend-type

Python编程实现线性回归和批量梯度下降法代码实例

4. **代码实例**:上述代码定义了一个名为`dataMinning`的类,包含了读取数据、生成数据、梯度下降优化以及结果展示的功能。`readFrom`方法用于从指定文件读取数据,`genData`方法用于生成模拟数据,`gradient...
recommend-type

python GUI库图形界面开发之PyQt5简单绘图板实例与代码分析

本文将深入探讨如何使用PyQt5创建一个简单的绘图板实例,并对其代码进行详细分析。 首先,我们要了解PyQt5中的几个关键类,它们在绘图板的实现中起着至关重要的作用: 1. **QPixmap**:这个类主要用于绘图,是专门...
recommend-type

读书笔记之16Attention机制说明及代码实现

下面将从 Attention 机制的本质思想、计算过程、Self Attention 模型三个方面对其进行详细解释。 Attention 机制的本质思想 Attention 机制的本质思想是将 source 中的构成元素想象成是由一些列的,value>数据对...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。