def main(): parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, default="data_files", help="File path to the PSG and annotation files.") parser.add_argument("--output_dir", type=str, default="sleepEDF20_fpzcz", help="Directory where to save numpy files outputs.") parser.add_argument("--subjects_output_dir", type=str, default="sleepEDF20_fpzcz_subjects", help="Directory where to save numpy files outputs.") parser.add_argument("--select_ch", type=str, default="EEG Fpz-Cz", help="The selected channel") args = parser.parse_args()解释这段代码
时间: 2023-05-17 17:02:53 浏览: 146
这段代码是一个 Python 脚本,它使用 argparse 模块来解析命令行参数。它定义了四个参数:data_dir,output_dir,subjects_output_dir 和 select_ch。这些参数分别表示 PSG 和注释文件的路径、numpy 文件输出的目录、numpy 文件输出的主题目录和选择的通道。在脚本中,使用 argparse 模块的 parse_args() 方法来解析命令行参数,并将它们存储在 args 对象中。这段代码的作用是为睡眠数据处理提供命令行参数支持。
相关问题
解释这段代码def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'source.npy')) parser.add_argument('-c', '--camera-input', type=str, default=os.path.join(data_dir, 'camera.npy')) parser.add_argument('-t', '--template-mesh', type=str, default=os.path.join(data_dir, 'obj/sphere/sphere_1352.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_deform')) parser.add_argument('-b', '--batch-size', type=int, default=120) args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) model = Model(args.template_mesh) renderer = jr.Renderer(image_size=64, sigma_val=1e-4, aggr_func_rgb='hard', camera_mode='look_at', viewing_angle=15, dr_type='softras', bin_size=16, max_elems_per_bin=2700, max_faces_per_pixel_for_grad=16) # read training images and camera poses images = np.load(args.filename_input).astype('float32') / 255. cameras = np.load(args.camera_input).astype('float32') optimizer = nn.Adam(model.parameters(), 0.01, betas=(0.5, 0.99)) camera_distances = jt.array(cameras[:, 0]) elevations = jt.array(cameras[:, 1]) viewpoints = jt.array(cameras[:, 2]) renderer.transform.set_eyes_from_angles(camera_distances, elevations, viewpoints)
这段代码定义了一个 Python 函数 `main()`,该函数使用 argparse 模块来解析命令行参数,这些参数包括输入文件名、相机输入、模板网格、输出目录、批量大小等。然后,该函数使用这些参数来读取训练图像和相机姿态,创建一个模型对象和一个渲染器对象。最后,该函数使用 PyTorch 的 Adam 优化器来优化模型参数。这段代码的主要目的是用于实现一个人脸重建的深度学习模型。
import jittor as jt import jrender as jr jt.flags.use_cuda = 1 # 开启GPU加速 import os import tqdm import numpy as np import imageio import argparse # 获取当前文件所在目录路径和数据目录路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): # 创建命令行参数解析器 parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()在每行代码后添加注释
# 引入所需的库
import jittor as jt
import jrender as jr
jt.flags.use_cuda = 1 # 开启GPU加速
import os
import tqdm
import numpy as np
import imageio
import argparse
# 获取当前文件所在目录路径和数据目录路径
current_dir = os.path.dirname(os.path.realpath(__file__))
data_dir = os.path.join(current_dir, 'data')
def main():
# 创建命令行参数解析器
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--filename-input', type=str,
default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) # 输入文件路径
parser.add_argument('-o', '--output-dir', type=str,
default=os.path.join(data_dir, 'results/output_render')) # 输出文件路径
args = parser.parse_args()
# other settings
camera_distance = 2.732 # 相机距离
elevation = 30 # 抬高角度
azimuth = 0 # 方位角度
# load from Wavefront .obj file
mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # 从.obj文件载入模型
# create renderer with SoftRas
renderer = jr.Renderer(dr_type='softras') # 创建渲染器
os.makedirs(args.output_dir, exist_ok=True)
# draw object from different view
loop = tqdm.tqdm(list(range(0, 360, 4))) # 视角变换循环
writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') # 创建gif文件
imgs = []
from PIL import Image
for num, azimuth in enumerate(loop):
# rest mesh to initial state
mesh.reset_() # 重置模型状态
loop.set_description('Drawing rotation')
renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) # 设置相机位置和角度
rgb = renderer.render_mesh(mesh, mode='rgb') # 渲染模型
image = rgb.numpy()[0].transpose((1, 2, 0)) # 转置图片通道
writer.append_data((255*image).astype(np.uint8)) # 写入gif文件
writer.close()
# draw object from different sigma and gamma
loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) # 模糊循环
renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) # 设置相机位置和角度
writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') # 创建gif文件
for num, gamma_pow in enumerate(loop):
# rest mesh to initial state
mesh.reset_() # 重置模型状态
renderer.set_gamma(10**gamma_pow) # 设置gamma值
renderer.set_sigma(10**(gamma_pow - 1)) # 设置sigma值
loop.set_description('Drawing blurring')
images = renderer.render_mesh(mesh, mode='rgb') # 渲染模型
image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB]
writer.append_data((255*image).astype(np.uint8)) # 写入gif文件
writer.close()
# save to textured obj
mesh.reset_() # 重置模型状态
mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) # 保存模型
if __name__ == '__main__':
main()
阅读全文