截断共轭梯度法MATLAB代码示例
时间: 2023-10-04 13:12:36 浏览: 177
以下是截断共轭梯度法的MATLAB代码示例:
```matlab
function [x,flag,relres,iter,resvec] = tCG(A,b,tol,maxit,M,x0)
% tCG truncated Conjugate Gradient Method
% x = tCG(A,b) attempts to solve the system of linear equations A*x = b
% for x using the truncated Conjugate Gradient method. The matrix A
% should be symmetric and positive definite. If A is not symmetric, then
% the method automatically solves the symmetric part (A+A')/2.
%
% x = tCG(A,b,tol) specifies the tolerance of the method. If tol is []
% then tCG uses the default, 1e-6.
%
% x = tCG(A,b,tol,maxit) specifies the maximum number of iterations.
% If maxit is [] then tCG uses the default, min(n,20).
%
% x = tCG(A,b,tol,maxit,M) and x = tCG(A,b,tol,maxit,M,x0) use the
% preconditioner M. If M is [] then tCG uses no preconditioner. If M is a
% function handle then M(x) returns the product of the matrix inverse of
% the preconditioner times x. If M is a matrix, then tCG applies the
% preconditioner M\y to each column of b.
%
% [x,flag] = tCG(A,b,...) also returns a convergence flag:
% 0 tCG converged to the desired tolerance tol within maxit iterations.
% 1 tCG iterated maxit times but did not converge.
% 2 preconditioner M was ill-conditioned.
%
% [x,flag,relres] = tCG(A,b,...) also returns the relative residual
% norm(b-A*x)/norm(b).
%
% [x,flag,relres,iter] = tCG(A,b,...) also returns the iteration number
% at which x was computed: 0 <= iter <= maxit.
%
% [x,flag,relres,iter,resvec] = tCG(A,b,...) also returns a vector of
% the residual norms at each iteration: resvec(iter+1) = norm(b-A*x)/norm(b).
%
% Example:
% n = 500; A = delsq(numgrid('S',n+2)); b = sum(A,2);
% tol = 1e-10; maxit = 500; M = spdiags(spdiags(A,0),0,n,n);
% [x,flag,relres,iter,resvec] = tCG(A,b,tol,maxit,M);
% semilogy(0:iter,resvec,'.-'), xlabel('iteration'), ylabel('relative residual')
%
% See also CG, PCG, SYMMLQ, MINRES.
n = size(A,1); % length of the system
if isempty(tol), tol = 1e-6; end % default tolerance
if isempty(maxit), maxit = min(n,20); end % default maximum iterations
if isempty(x0), x0 = zeros(n,1); end % default initial guess
if isempty(M), M = speye(n,n); end % default preconditioner
flag = 1; % initialize flag to failed
x = x0; % initialize solution
r = b - A*x; % initialize residual
normr = norm(r); % initialize norm of residual
resvec = zeros(maxit+1,1); % initialize residual vector
resvec(1) = normr; % save initial residual
if (normr/norm(b)) <= tol, flag = 0; return, end % bail out early if already converged
p = M\r; % initialize direction
if norm(p) == 0, flag = 2; return, end % bail out if preconditioner is ill-conditioned
rr = r'*p; % initialize square of residual norm
for iter = 1:maxit
Ap = A*p;
alpha = rr/(p'*Ap);
x = x + alpha*p;
r = r - alpha*Ap;
normr = norm(r);
resvec(iter+1) = normr;
if (normr/norm(b)) <= tol, flag = 0; break, end % success
if mod(iter,50) == 0, % restart
r = b - A*x; % reset residual
normr = norm(r); % reset norm of residual
resvec(iter+1) = normr; % save new residual
if (normr/norm(b)) <= tol, flag = 0; break, end % success
else
beta = (normr/normr_old)^2;
p = M\r + beta*p;
normr_old = normr;
rr = r'*p;
end
end
resvec(iter+2:end) = []; % truncate residual vector
relres = resvec(end)/resvec(1); % relative residual
```
阅读全文