用Python对如下威斯康辛州乳腺癌数据进行建模和调参 SVC
时间: 2024-01-17 14:03:51 浏览: 87
好的,下面是用Python对威斯康辛州乳腺癌数据进行建模和调参SVC的步骤:
1. 导入必要的库和数据集
```python
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
data = load_breast_cancer()
X = data.data
y = data.target
```
2. 数据预处理
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 建立SVC模型
```python
svc = SVC()
```
4. 设置网格搜索的参数
```python
param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001], 'kernel': ['rbf', 'linear']}
grid = GridSearchCV(svc, param_grid, refit=True, verbose=3)
```
5. 训练模型并进行网格搜索
```python
grid.fit(X_train, y_train)
```
6. 输出最优参数和最佳得分
```python
print("Best parameters: ", grid.best_params_)
print("Best accuracy: ", grid.best_score_)
```
最后,你得到了SVC模型的最佳参数和最佳得分。你可以使用这些参数来构建最佳的SVC模型,以便进行预测。
阅读全文