高斯混合模型实现图像分割matlab代码
时间: 2023-11-26 16:05:22 浏览: 104
以下是一个简单的高斯混合模型实现图像分割的Matlab代码示例:
```matlab
image = imread('image.jpg');
img_double = im2double(image);
[m, n, ~] = size(img_double);
num_clusters = 5; % 设置聚类数目
% 初始化高斯混合模型参数
mu = rand(num_clusters, 3);
sigma = repmat(eye(3), [1, 1, num_clusters]);
w = ones(1, num_clusters) / num_clusters;
% 迭代
max_iter = 100;
for iter = 1:max_iter
% E步:计算每个像素属于每个高斯分布的概率
prob = zeros(m*n, num_clusters);
for i = 1:num_clusters
prob(:, i) = w(i) * mvnpdf(reshape(img_double, [m*n, 3]), mu(i, :), sigma(:, :, i));
end
prob_sum = sum(prob, 2);
gamma = prob ./ repmat(prob_sum, [1, num_clusters]);
% M步:更新高斯混合模型参数
total_gamma = sum(gamma, 1);
for i = 1:num_clusters
mu(i, :) = (1 / total_gamma(i)) * sum(gamma(:, i) .* img_double, 1);
sigma(:, :, i) = (1 / total_gamma(i)) * (gamma(:, i)' * (img_double - mu(i, :)) .* (img_double - mu(i, :)));
w(i) = total_gamma(i) / (m * n);
end
end
% 计算每个像素属于哪个高斯分布
prob = zeros(m*n, num_clusters);
for i = 1:num_clusters
prob(:, i) = w(i) * mvnpdf(reshape(img_double, [m*n, 3]), mu(i, :), sigma(:, :, i));
end
[~, labels] = max(prob, [], 2);
labels = reshape(labels, [m, n]);
% 显示分割结果
figure;
imshow(labels, []);
```
以上代码中,`image` 是输入的图像,`num_clusters` 是指定的高斯混合模型中高斯分布的数量。初始化高斯混合模型参数后,使用 EM 算法迭代估计参数,在每次迭代中,先计算每个像素属于每个高斯分布的概率,然后根据这些概率更新高斯混合模型参数。最后,根据更新后的参数计算每个像素属于哪个高斯分布并进行分割。
阅读全文