checkpointer = ModelCheckpoint(filepath='/tmp/checkpoint.h5', verbose=1, save_best_only=True)
时间: 2024-03-11 22:44:00 浏览: 88
这段代码创建了一个ModelCheckpoint回调函数实例,参数说明如下:
- filepath:保存模型权重的路径。
- verbose:日志显示模式,0表示不显示日志,1表示显示进度条,2表示显示每个epoch的日志。
- save_best_only:是否只保存最好的模型,如果为True,则只保存在验证集上性能最好的模型,默认为False。
该函数将在每个epoch结束时检查模型在验证集上的表现,并且如果模型的性能比之前保存的模型性能更好,就将当前模型权重保存到指定路径下。其中verbose=1表示显示进度条,以便于用户可以看到训练进度,save_best_only=True则表示只保存最好的模型。
相关问题
if __name__ == '__main__': filepath = './models/table-line-fine.h5' ##模型权重存放位置 checkpointer = ModelCheckpoint(filepath=filepath, monitor='loss', verbose=0, save_weights_only=True, save_best_only=True) rlu = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=5, verbose=0, mode='auto', cooldown=0, min_lr=0) model.compile(optimizer=Adam(lr=0.0001), loss='binary_crossentropy', metrics=['acc']) paths = glob('./train/dataset-line/*/*.json') ##table line dataset label with labelme trainP, testP = train_test_split(paths, test_size=0.1) print('total:', len(paths), 'train:', len(trainP), 'test:', len(testP)) batchsize = 4 trainloader = gen(trainP, batchsize=batchsize, linetype=1) testloader = gen(testP, batchsize=batchsize, linetype=1) model.fit_generator(trainloader, steps_per_epoch=max(1, len(trainP) // batchsize), callbacks=[checkpointer], validation_data=testloader, validation_steps=max(1, len(testP) // batchsize), epochs=30)
这段代码是用来训练一个模型的。首先,它会定义一个模型权重的存放位置。然后,它会使用 ModelCheckpoint 和 ReduceLROnPlateau 两个回调函数。其中 ModelCheckpoint 会在每个 epoch 结束后保存模型的权重,只保存最好的那个模型。而 ReduceLROnPlateau 则会在训练过程中,如果发现 loss 不再减少,就会将学习率降低一些,以便更好的收敛。接下来,代码会使用 Adam 优化器和 binary_crossentropy 损失函数来编译模型,并定义了一个数据集的路径。在训练数据集和测试数据集上分别进行训练和验证,并设置了一个 epoch 的数量。
介绍一下这段代码的Depthwise卷积层def get_data4EEGNet(kernels, chans, samples): K.set_image_data_format('channels_last') data_path = '/Users/Administrator/Desktop/project 5-5-1/' raw_fname = data_path + 'concatenated.fif' event_fname = data_path + 'concatenated.fif' tmin, tmax = -0.5, 0.5 #event_id = dict(aud_l=769, aud_r=770, foot=771, tongue=772) raw = io.Raw(raw_fname, preload=True, verbose=False) raw.filter(2, None, method='iir') events, event_id = mne.events_from_annotations(raw, event_id={'769': 1, '770': 2,'770': 3, '771': 4}) #raw.info['bads'] = ['MEG 2443'] picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False, picks=picks, baseline=None, preload=True, verbose=False) labels = epochs.events[:, -1] print(len(labels)) print(len(epochs)) #epochs.plot(block=True) X = epochs.get_data() * 250 y = labels X_train = X[0:144,] Y_train = y[0:144] X_validate = X[144:216, ] Y_validate = y[144:216] X_test = X[216:, ] Y_test = y[216:] Y_train = np_utils.to_categorical(Y_train - 1) Y_validate = np_utils.to_categorical(Y_validate - 1) Y_test = np_utils.to_categorical(Y_test - 1) X_train = X_train.reshape(X_train.shape[0], chans, samples, kernels) X_validate = X_validate.reshape(X_validate.shape[0], chans, samples, kernels) X_test = X_test.reshape(X_test.shape[0], chans, samples, kernels) return X_train, X_validate, X_test, Y_train, Y_validate, Y_test kernels, chans, samples = 1, 3, 251 X_train, X_validate, X_test, Y_train, Y_validate, Y_test = get_data4EEGNet(kernels, chans, samples) model = EEGNet(nb_classes=3, Chans=chans, Samples=samples, dropoutRate=0.5, kernLength=32, F1=8, D=2, F2=16, dropoutType='Dropout') model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) checkpointer = ModelCheckpoint(filepath='/Users/XXX/baseline.h5', verbose=1, save_best_only=True) class_weights = {0: 1, 1: 1, 2: 1, 3: 1} fittedModel = model.fit(X_train, Y_train, batch_size=2, epochs=100, verbose=2, validation_data=(X_validate, Y_validate), callbacks=[checkpointer], class_weight=class_weights) probs = model.predict(X_test) preds = probs.argmax(axis=-1) acc = np.mean(preds == Y_test.argmax(axis=-1)) print("Classification accuracy: %f " % (acc))
这段代码是用于对EEG数据进行分类的。首先,它读取了一个数据集,将数据集分成训练集、验证集和测试集。然后,它使用EEGNet模型对数据进行训练和验证,并输出分类准确率。其中,EEGNet模型是一种针对EEG数据设计的卷积神经网络模型,它包括了深度可分离卷积层、批归一化层和Dense层。这个模型的输入是EEG信号,输出是分类结果。在训练过程中,该代码使用了dropout技术和class weight调节技术,以提高模型的鲁棒性和泛化性能。最后,该代码输出了测试集上的分类准确率。
阅读全文