深度强化学习代码gpt
时间: 2023-09-21 12:02:55 浏览: 147
以下是一个简单的GPT-2模型的深度强化学习代码示例(使用Python和PyTorch框架):
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义GPT-2模型
class GPT2(nn.Module):
def __init__(self, vocab_size, d_model, nhead, num_layers):
super(GPT2, self).__init__()
self.d_model = d_model
self.nhead = nhead
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size, d_model)
self.transformer = nn.Transformer(d_model, nhead, num_layers)
self.fc = nn.Linear(d_model, vocab_size)
def forward(self, x):
x = self.embedding(x)
output = self.transformer(x, x)
output = self.fc(output)
return output
# 定义Deep Q-Network (DQN) agent
class DQNAgent:
def __init__(self, state_size, action_size, memory_size=10000, batch_size=32, gamma=0.99, epsilon=1.0, epsilon_min=0.01, epsilon_decay=0.995):
self.state_size = state_size
self.action_size = action_size
self.memory_size = memory_size
self.batch_size = batch_size
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.memory = []
self.model = GPT2(vocab_size=state_size, d_model=512, nhead=8, num_layers=6)
self.target_model = GPT2(vocab_size=state_size, d_model=512, nhead=8, num_layers=6)
self.optimizer = optim.Adam(self.model.parameters(), lr=0.0001)
# 保存经验
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
if len(self.memory) > self.memory_size:
del self.memory[0]
# 从经验中采样并训练模型
def replay(self):
if len(self.memory) < self.batch_size:
return
batch = np.random.choice(self.memory, self.batch_size)
states = []
targets = []
for state, action, reward, next_state, done in batch:
target = reward
if not done:
target += self.gamma * torch.max(self.target_model(next_state), dim=1)[0]
target_f = self.model(state)
target_f[0][action] = target
states.append(state)
targets.append(target_f)
states = torch.cat(states, dim=0)
targets = torch.cat(targets, dim=0)
self.optimizer.zero_grad()
loss = nn.MSELoss()(self.model(states), targets)
loss.backward()
self.optimizer.step()
# 选择行动
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_size)
return torch.argmax(self.model(state)).item()
# 更新target网络
def update_target_model(self):
self.target_model.load_state_dict(self.model.state_dict())
# 降低epsilon值
def decay_epsilon(self):
self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
```
这个代码示例实现了一个GPT-2模型的深度强化学习代理,该代理使用了Deep Q-Network (DQN)算法来学习选择下一个词语。其中,`GPT2`类是一个简单的GPT-2模型,`DQNAgent`类是一个使用DQN算法的深度强化学习代理。该代理使用经验回放和目标网络来提高学习效率,并且在每个回合结束后降低epsilon值以逐渐减少探索行为。
阅读全文