class CSPDarknet(nn.Module): def __init__(self, base_channels, base_depth, phi, pretrained): super().__init__()
时间: 2023-10-07 21:08:57 浏览: 115
这是一个 PyTorch 模型的定义,名称为 CSPDarknet。它继承了 nn.Module 类,并实现了 __init__() 方法。构造函数中有四个参数:
- base_channels:基础通道数,用于控制模型的宽度。
- base_depth:基础深度,用于控制模型的深度。
- phi:缩放因子,用于控制模型的大小。
- pretrained:是否使用预训练权重。
在构造函数中,还调用了父类的构造函数,并对模型进行了初始化。具体实现需要查看该类的 forward() 方法。
相关问题
class AAMsoftmax(nn.Module): def __init__(self, n_class, m, s): super(AAMsoftmax, self).__init__() self.m = m self.s = s self.weight = torch.nn.Parameter(torch.FloatTensor(n_class, 256), requires_grad=True) self.ce = nn.CrossEntropyLoss() nn.init.xavier_normal_(self.weight, gain=1) self.cos_m = math.cos(self.m) self.sin_m = math.sin(self.m) self.th = math.cos(math.pi - self.m) self.mm = math.sin(math.pi - self.m) * self.m def forward(self, x, label=None): cosine = F.linear(F.normalize(x), F.normalize(self.weight)) sine = torch.sqrt((1.0 - torch.mul(cosine, cosine)).clamp(0, 1)) phi = cosine * self.cos_m - sine * self.sin_m phi = torch.where((cosine - self.th) > 0, phi, cosine - self.mm) one_hot = torch.zeros_like(cosine) one_hot.scatter_(1, label.view(-1, 1), 1) output = (one_hot * phi) + ((1.0 - one_hot) * cosine) output = output * self.s loss = self.ce(output, label) prec1 = accuracy(output.detach(), label.detach(), topk=(1,))[0]
这段代码是一个 PyTorch 的模型实现,实现了一个 AAMsoftmax 的分类器。这个分类器的输入是一个 x 矩阵,代表输入的特征,label 是一个张量,代表输入的标签。该模型的 forward 函数中,首先对输入的特征 x 进行归一化,然后通过线性变换将 x 投影到一个维度为 256 的空间中,得到一个 cosine 矩阵。接下来通过一系列的数学计算,将 cosine 转化为一个 phi 矩阵,使得在 phi 矩阵上的分类间的 margin 更大,以提高分类的精度。最后,将 phi 矩阵和原始的 cosine 矩阵加权相加,得到最终的输出。同时,计算交叉熵损失和精度,并返回。
阅读全文