针对语音识别任务 利用python语言对10个数字的孤立识别,分别使用GMM和HMM建立对1-9十个数字的孤立词语音分类识别模型的程序代码
时间: 2024-03-12 21:48:34 浏览: 85
好的,以下是一个简单的程序代码,用于对10个数字的孤立识别,分别使用GMM和HMM建立对1-9十个数字的孤立词语音分类识别模型,供您参考:
```python
# 导入必要的库
import os
import glob
import numpy as np
from sklearn import mixture
from hmmlearn import hmm
from python_speech_features import mfcc
# 定义MFCC参数
numcep = 13
winlen = 0.025
winstep = 0.01
# 加载数据
def load_data(path):
data = []
for filename in glob.glob(os.path.join(path, '*.wav')):
_, digit = os.path.splitext(os.path.basename(filename))
digit = int(digit[1])
signal, rate = librosa.load(filename, sr=None)
mfcc_feat = mfcc(signal, rate, numcep=numcep, winlen=winlen, winstep=winstep)
data.append((mfcc_feat, digit))
return data
# GMM模型训练和预测
def train_gmm(data):
models = []
for i in range(1, 10):
digits = [x for x in data if x[1] == i]
X = np.array([x[0] for x in digits])
gmm = mixture.GaussianMixture(n_components=3, covariance_type='diag')
gmm.fit(X)
models.append(gmm)
return models
def predict_gmm(models, mfcc_feat):
scores = np.zeros(9)
for i, gmm in enumerate(models):
scores[i] = gmm.score(mfcc_feat)
return np.argmax(scores) + 1
# HMM模型训练和预测
def train_hmm(data):
models = []
for i in range(1, 10):
digits = [x for x in data if x[1] == i]
X = np.array([x[0] for x in digits])
lengths = [len(x) for x in X]
hmm_model = hmm.GaussianHMM(n_components=3)
hmm_model.fit(X, lengths=lengths)
models.append(hmm_model)
return models
def predict_hmm(models, mfcc_feat):
scores = np.zeros(9)
for i, hmm_model in enumerate(models):
scores[i] = hmm_model.score(mfcc_feat)
return np.argmax(scores) + 1
# 加载数据
data = load_data('data/')
# GMM模型训练和预测
gmm_models = train_gmm(data)
mfcc_feat = mfcc(signal, rate, numcep=numcep, winlen=winlen, winstep=winstep)
digit = predict_gmm(gmm_models, mfcc_feat)
# HMM模型训练和预测
hmm_models = train_hmm(data)
mfcc_feat = mfcc(signal, rate, numcep=numcep, winlen=winlen, winstep=winstep)
digit = predict_hmm(hmm_models, mfcc_feat)
```
以上是一个简单的程序代码,用于对10个数字的孤立识别,分别使用GMM和HMM建立对1-9十个数字的孤立词语音分类识别模型。需要注意的是,此代码仅供参考,具体实现还需要根据实际情况进行调整和优化。
阅读全文