给我一份stm32f1使用标准库,adc1 通道0采集的数据使用dma传输到串口1 PA9发送,控制频率为16khz

时间: 2024-02-19 19:58:44 浏览: 21
好的,以下是使用标准库实现的代码: ```c #include "stm32f10x.h" #define ADC1_DR_Address ((uint32_t)0x4001244C) // ADC1数据寄存器地址 #define ADC_BUF_SIZE 1024 // ADC数据缓存大小 uint16_t ADC1_Value[ADC_BUF_SIZE]; // ADC1数据缓存 uint16_t ADC_Index = 0; // ADC1数据缓存索引 void RCC_Configuration(void); void GPIO_Configuration(void); void ADC_Configuration(void); void DMA_Configuration(void); void USART_Configuration(void); void NVIC_Configuration(void); int main(void) { RCC_Configuration(); GPIO_Configuration(); ADC_Configuration(); DMA_Configuration(); USART_Configuration(); NVIC_Configuration(); ADC_SoftwareStartConvCmd(ADC1, ENABLE); // 开始ADC转换 while (1) { // 等待DMA传输完成 while (DMA_GetFlagStatus(DMA1_FLAG_TC1) == RESET); // 发送数据 USART_SendData(USART1, (uint16_t)ADC1_Value[ADC_Index++]); // 重置索引 if (ADC_Index >= ADC_BUF_SIZE) { ADC_Index = 0; } // 清除DMA传输完成标志 DMA_ClearFlag(DMA1_FLAG_TC1); } } void RCC_Configuration(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1 | RCC_APB2Periph_USART1, ENABLE); RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; // ADC1通道0 PA0配置 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); // USART1 PA9配置 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); } void ADC_Configuration(void) { ADC_InitTypeDef ADC_InitStructure; // ADC1配置 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); // ADC1规则组配置 ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_28Cycles5); // DMA配置 ADC_DMACmd(ADC1, ENABLE); // 使能ADC1 DMA传输 } void DMA_Configuration(void) { DMA_InitTypeDef DMA_InitStructure; // DMA1通道1配置 DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; // 源地址:ADC1数据寄存器地址 DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ADC1_Value; // 目标地址:ADC1数据缓存 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_BufferSize = ADC_BUF_SIZE; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel1, &DMA_InitStructure); DMA_Cmd(DMA1_Channel1, ENABLE); // 使能DMA1通道1 } void USART_Configuration(void) { USART_InitTypeDef USART_InitStructure; // USART1配置 USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_9b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_Even; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE); // 使能USART1 } void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; // DMA1通道1中断配置 NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE); // 使能DMA1通道1传输完成中断 } void DMA1_Channel1_IRQHandler(void) { DMA_ClearITPendingBit(DMA1_IT_TC1); // 清除DMA1通道1传输完成中断标志 } ``` 需要注意的是,上述代码中的 ADC_BUF_SIZE 定义了 ADC 数据缓存的大小,可以根据需要进行修改。同时,USART 配置的波特率为 115200,可以根据需要进行修改。

相关推荐

最新推荐

recommend-type

STM32 DMA中断模式下ADC多通道数据采集+均值滤波

本程序实现STM32 DMA中断模式下ADC多通道数据采集,并经过简单的均值滤波,亲测可用。 若有错误之处,希望读者指出,大家共同学习,一起进步!
recommend-type

STM32——多通道ADC的DMA方式采集方法_嵌入式_夜风的博客-CSDN博客.pdf

STM32——多通道ADC的DMA方式采集方法_嵌入式_夜风的博客-CSDN博客
recommend-type

用DMA实现多路ADC通道数据采集

今天尝试了下STM32的ADC采样,并利用DMA实现采样数据的直接搬运存储,这样就不用CPU去参与操作了。
recommend-type

STM32的使用之SPI通信DMA模式

MCU:STM32F303VC,在SPI通信中,可以同时开启发送和接收DMA请求,自动数据的发送和接收,完成数据的交换。
recommend-type

STM32_ADC多通道采样的例子

STM32 ADC多通道转换 描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。