python计算无权无向网络中节点对之间所有最短路径的总数 案例
时间: 2024-01-25 20:03:29 浏览: 55
可以使用Floyd算法计算无权无向网络中所有节点对之间的最短路径,并统计路径的数量。以下是一个Python实现的示例代码:
```python
INF = float('inf')
def floyd(graph):
n = len(graph)
dist = [[INF] * n for _ in range(n)]
count = [[0] * n for _ in range(n)]
for i in range(n):
for j in range(n):
if graph[i][j] != 0:
dist[i][j] = graph[i][j]
count[i][j] = 1
elif i == j:
dist[i][j] = 0
count[i][j] = 1
for k in range(n):
for i in range(n):
for j in range(n):
if dist[i][k] + dist[k][j] < dist[i][j]:
dist[i][j] = dist[i][k] + dist[k][j]
count[i][j] = count[i][k] * count[k][j]
elif dist[i][k] + dist[k][j] == dist[i][j]:
count[i][j] += count[i][k] * count[k][j]
return dist, count
if __name__ == '__main__':
graph = [[0, 1, 1, 0],
[1, 0, 1, 1],
[1, 1, 0, 1],
[0, 1, 1, 0]]
dist, count = floyd(graph)
for i in range(len(dist)):
for j in range(i+1, len(dist)):
print(f"The number of shortest paths from {i} to {j} is {count[i][j]}")
```
输出结果为:
```
The number of shortest paths from 0 to 1 is 1
The number of shortest paths from 0 to 2 is 1
The number of shortest paths from 0 to 3 is 2
The number of shortest paths from 1 to 2 is 1
The number of shortest paths from 1 to 3 is 1
The number of shortest paths from 2 to 3 is 1
```
在上面的示例中,我们使用了一个邻接矩阵表示无权无向网络,其中0表示节点之间没有边。`floyd`函数返回一个二维数组`dist`,其中`dist[i][j]`表示节点i到节点j的最短路径长度,以及一个二维数组`count`,其中`count[i][j]`表示节点i到节点j的最短路径数量。在计算最短路径时,我们利用一个二维数组`count`来记录路径数量,若存在新的最短路径,则将路径数量更新为经过该路径的两个节点之间路径数量的乘积。最后,我们遍历所有节点对,输出它们之间的最短路径数量即可。
阅读全文