.csv数据中输入固定的房间面积为60,朝向中1代表房屋东,0代表房屋西,2代表房屋南,3代表房屋北,日照时长,室外最高温,最低温,室内温度,室内人数作为输入,一般舒适度为输出,利用灰狼优化算法进行预测,将一般舒适度与实际的舒适度做比较,将结果绘图进行数据可视化。 python
时间: 2023-10-18 17:04:15 浏览: 82
好的,我了解了您的问题。这是一个回归问题,您可以使用灰狼优化算法进行预测。以下是一些代码示例,需要使用pandas、numpy、sklearn、matplotlib和h5py库,您可以使用pip命令进行安装。
首先,我们需要加载数据集,并将其分为训练集和测试集。
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
data = pd.read_csv('data.csv')
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
然后,我们需要将数据规范化。这可以通过将每个特征缩放到0和1之间来完成。
```python
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
接下来,我们可以使用灰狼优化算法来训练模型。
```python
import math
import random
import numpy as np
import matplotlib.pyplot as plt
def init(positions, dim):
for i in range(positions.shape[0]):
for j in range(dim):
positions[i][j] = np.random.uniform(-1, 1)
return positions
def get_fitness(X_train, y_train, X_test, y_test, solution):
clf = KNeighborsRegressor(n_neighbors=5)
clf.fit(X_train, y_train)
y_pred_test = clf.predict(X_test)
error = np.mean((y_test - y_pred_test) ** 2)
fitness = 1 / (1 + error)
return fitness
def update_positions(positions, alpha, beta, delta, dim):
for i in range(positions.shape[0]):
for j in range(dim):
r1, r2 = random.uniform(0, 1), random.uniform(0, 1)
A1, A2 = 2 * alpha * r1 - alpha, 2 * alpha * r2 - alpha
C1, C2 = 2 * r1, 2 * r2
D_alpha, D_beta, D_delta = abs(C1 * delta[j] - positions[i][j]), abs(C2 * delta[j] - positions[i][j]), abs(
C1 * delta[j] - C2 * delta[j])
X1, X2, X3 = delta[j] - A1 * D_alpha, delta[j] - A2 * D_beta, delta[j] - alpha * D_delta
positions[i][j] = (X1 + X2 + X3) / 3
return positions
def GWO(X_train, y_train, X_test, y_test, num_iter, num_search_agents=5):
dim = X_train.shape[1]
alpha, beta, delta = np.zeros(dim), np.zeros(dim), np.zeros(dim)
positions = np.zeros((num_search_agents, dim))
positions = init(positions, dim)
fitness = np.zeros(num_search_agents)
alpha_score = float('-inf')
alpha_pos = np.zeros(dim)
for i in range(num_iter):
for j in range(num_search_agents):
fitness[j] = get_fitness(X_train, y_train, X_test, y_test, positions[j])
if fitness[j] > alpha_score:
alpha_score = fitness[j]
alpha_pos = positions[j]
for j in range(num_search_agents):
if fitness[j] < alpha_score and fitness[j] >= np.max(fitness[:j]):
alpha_pos = positions[j]
alpha_score = fitness[j]
if fitness[j] < beta_score and fitness[j] >= np.max(fitness[:j]):
beta_pos = positions[j]
beta_score = fitness[j]
if fitness[j] < delta_score and fitness[j] >= np.max(fitness[:j]):
delta_pos = positions[j]
delta_score = fitness[j]
alpha, beta, delta = 2 * alpha - (beta + delta), 2 * beta - (alpha + delta), 2 * delta - (alpha + beta)
positions = update_positions(positions, alpha, beta, delta, dim)
return alpha_pos
```
最后,我们可以使用matplotlib库将结果可视化。
```python
from sklearn.neighbors import KNeighborsRegressor
alpha_pos = GWO(X_train, y_train, X_test, y_test, num_iter=100)
clf = KNeighborsRegressor(n_neighbors=5)
clf.fit(X_train, y_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
plt.plot(y_test, label='True')
plt.plot(y_pred_test, label='Predicted')
plt.legend()
plt.show()
```
这将显示一个包含实际值和预测值的折线图。
阅读全文