keras word2vec doc2vec 实现代码

时间: 2023-01-11 08:55:36 浏览: 104
请问你想要在 Keras 中实现 Word2Vec 还是 Doc2Vec? 下面是 Word2Vec 的实现代码: ```python from gensim.models import Word2Vec # 读入文本数据 sentences = [['this', 'is', 'a', 'sentence'], ['this', 'is', 'another', 'sentence']] # 训练模型 model = Word2Vec(sentences, min_count=1) # 获取某个单词的向量表示 vector = model['sentence'] ``` 下面是 Doc2Vec 的实现代码: ```python from gensim.models import Doc2Vec from gensim.models.doc2vec import TaggedDocument # 读入文本数据 documents = [TaggedDocument(words=['this', 'is', 'a', 'sentence'], tags=['SENT_1']), TaggedDocument(words=['this', 'is', 'another', 'sentence'], tags=['SENT_2'])] # 训练模型 model = Doc2Vec(documents, min_count=1) # 获取某个句子的向量表示 vector = model.infer_vector(['this', 'is', 'a', 'sentence']) ``` 上面的代码使用了 Gensim 库中的 Word2Vec 和 Doc2Vec 模型。你也可以使用 Keras 库中的 Embedding 层来实现这些模型。

相关推荐

最新推荐

recommend-type

在keras里面实现计算f1-score的代码

我就废话不多说了,大家还是直接看代码吧! ### 以下链接里面的code import numpy as np from keras.callbacks import Callback from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall...
recommend-type

基于keras输出中间层结果的2种实现方式

1、使用函数模型API,新建一个model,将...from keras.models import Sequential from keras.layers import Dense,Activation from keras.models import Model model = Sequential() model.add(Dense(32, activation=
recommend-type

使用keras实现孪生网络中的权值共享教程

主要介绍了使用keras实现孪生网络中的权值共享教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

keras实现VGG16 CIFAR10数据集方式

主要介绍了keras实现VGG16 CIFAR10数据集方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

材料装订目录(其他证明材料部分).doc

材料装订目录(其他证明材料部分).doc
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

前端深拷贝 和浅拷贝有哪些方式,你在哪里使用过

前端深拷贝和浅拷贝的方式有很多,下面列举几种常用的方式: 深拷贝: 1. JSON.parse(JSON.stringify(obj)),该方法可以将对象序列化为字符串,再将字符串反序列化为新的对象,从而实现深拷贝。但是该方法有一些限制,例如无法拷贝函数、RegExp等类型的数据。 2. 递归拷贝,即遍历对象的每个属性并进行拷贝,如果属性值是对象,则递归进行拷贝。 3. 使用第三方库如lodash、jQuery等提供的深拷贝方法。 浅拷贝: 1. Object.assign(target, obj1, obj2, ...),该方法可以将源对象的属性浅拷贝到目标对象中,如果有相同的属性,则会
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。