推荐30个以上比较好的命名实体识别模型
时间: 2023-02-05 13:05:47 浏览: 269
命名实体识别模型是指识别文本中提到的特定的人名、地名、机构名等命名实体的模型。推荐的命名实体识别模型有:
1. BERT(Bidirectional Encoder Representations from Transformers)
2. RoBERTa(Robustly Optimized BERT Approach)
3. GPT(Generative Pre-training Transformer)
4. GPT-2(Generative Pre-training Transformer 2)
5. Transformer-XL
6. XLNet
7. ALBERT(A Lite BERT)
8. DistilBERT
9. T5(Text-To-Text Transfer Transformer)
10. ERNIE(Enhanced Representation through kNowledge IntEgration)
11. XLM(Cross-lingual Multilingual)
12. ELECTRA(Efficiently Learning an Encoder that Classifies Token Replacements Accurately)
13. DeBERTa(Decoder-based BERT)
14. MT-DNN(Multi-Task Deep Neural Network)
15. SpanBERT(Span-Based BERT)
16. FlauBERT(Flaubert: French Language Model)
17. CamemBERT(Cambridge Multilingual BERT)
18. CTRL(Conditional Transformer Language Model)
19. Reformer(Efficient Transformer)
20. Longformer(Long-Form Document Transformer)
21. T3(Transformer-3)
22. XLM-RoBERTa
23. MBART(Multilingual Denoising Pre-training Transformer)
24. MMBT(Multilingual Masked BERT)
25. XNLI(Cross-lingual Natural Language Inference)
26. BERTje(Dutch BERT)
27. KoBERT(Korean BERT)
28. ZH-BERT(Chinese BERT)
29. JA-BERT(Japanese BERT)
30. TH-BERT(Thai BERT)
以上列出的模型均为当前比较流行的命名实体识别模型,但是具体哪个模型更适合你的应用,还需要具体分析你的数据和问题。