用c语言递归算法解决汉诺塔问题

时间: 2023-08-31 17:21:39 浏览: 60
### 回答1: 汉诺塔问题可以用递归算法来解决,用C语言实现的话大概是这样: void hanoi(int n, char A, char B, char C) { if(n == 1) { printf("Move disk 1 from %c to %c\n", A, C); return; } hanoi(n-1, A, C, B); printf("Move disk %d from %c to %c\n", n, A, C); hanoi(n-1, B, A, C); } ### 回答2: 汉诺塔问题是经典的递归问题,通过使用C语言,我们可以编写递归算法来解决这个问题。 首先,我们定义一个函数`hanoi`来解决汉诺塔问题。该函数接受三个参数:`n`表示要移动的盘子的数量,`start`表示起始柱子,`end`表示目标柱子。 ```c #include <stdio.h> void hanoi(int n, char start, char end) { if (n == 1) { printf("从 %c 移动到 %c\n", start, end); return; } char temp = 'A' + 'B' + 'C' - start - end; // 将n-1个盘子从起始柱子移动到临时柱子 hanoi(n-1, start, temp); // 将最后一个盘子从起始柱子移动到目标柱子 printf("从 %c 移动到 %c\n", start, end); // 将n-1个盘子从临时柱子移动到目标柱子 hanoi(n-1, temp, end); } ``` 在`hanoi`函数中,我们首先判断递归的终止条件,即只有一个盘子时,直接将盘子从起始柱子移动到目标柱子。否则,我们需要将n-1个盘子从起始柱子移动到临时柱子,然后将最后一个盘子从起始柱子移动到目标柱子,最后再将n-1个盘子从临时柱子移动到目标柱子。 使用以上递归算法,我们可以解决汉诺塔问题。 ### 回答3: 汉诺塔问题是一个经典的数学问题,通过使用C语言递归算法可以非常简洁地解决。汉诺塔问题的规则如下:有三根柱子,分别标记为A、B、C,初始时所有的圆盘都放在柱子A上,且按从小到大的顺序从上到下依次叠放。要求通过这三根柱子将所有的圆盘移动到柱子C上,期间可以借助柱子B辅助移动,但必须满足以下规则: 1. 每次只能移动一个圆盘。 2. 大圆盘不能放在小圆盘上面。 使用递归算法来解决汉诺塔问题可以按照以下步骤: 1. 当只有一个圆盘需要移动时,直接将它从柱子A移动到柱子C上。 2. 当有多个圆盘需要移动时,可以分解为三个步骤: a. 将除了最底下的一个圆盘外的其他圆盘从柱子A移动到柱子B上(借助柱子C)。 b. 将最底下的一个圆盘从柱子A移动到柱子C上。 c. 将之前移动到柱子B上的所有圆盘从柱子B移动到柱子C上(借助柱子A)。 以上步骤可以通过递归的方式重复,直到只有一个圆盘需要移动为止。 下面是用C语言代码实现递归算法解决汉诺塔问题的示例: ```c #include <stdio.h> void hanoi(int n, char A, char B, char C) { if (n == 1) { printf("Move disk 1 from %c to %c\n", A, C); return; } hanoi(n-1, A, C, B); printf("Move disk %d from %c to %c\n", n, A, C); hanoi(n-1, B, A, C); } int main() { int n = 3; // 圆盘的数量 hanoi(n, 'A', 'B', 'C'); return 0; } ``` 上述代码中,`hanoi`函数接受四个参数,分别表示圆盘的数量`n`,起始柱子`A`,辅助柱子`B`,目标柱子`C`。在递归过程中,会输出每一步的移动操作。最后在`main`函数中调用`hanoi`函数开始解决汉诺塔问题。 通过递归算法解决汉诺塔问题可以很好地展示递归思想的威力,相比其他方法更加简洁高效。

相关推荐

汉诺塔问题是经典的递归问题,它的求解过程可以用递归算法来实现。以下是汉诺塔问题的C语言递归算法分析。 1. 问题描述 汉诺塔问题是指有三根柱子A、B、C,在A柱子上从下往上按照大小顺序放置n个盘子,要求把这n个盘子移动到C柱子上,移动过程中可以借助B柱子,但是要满足以下条件: 1. 每次只能移动一个盘子; 2. 盘子不能放在比它小的盘子上面。 2. 递归实现 汉诺塔问题可以通过递归实现,具体实现过程如下: 1. 将n-1个盘子从A柱子移动到B柱子上,借助C柱子; 2. 将A柱子上最大的盘子移动到C柱子上; 3. 将n-1个盘子从B柱子移动到C柱子上,借助A柱子。 递归终止条件是只有一个盘子时直接将其从A柱子移动到C柱子上。 3. 代码实现 下面是汉诺塔问题的C语言递归算法实现代码: c #include <stdio.h> void hanoi(int n, char from, char to, char via) { if (n == 1) { printf("Move disk %d from %c to %c\n", n, from, to); } else { hanoi(n-1, from, via, to); printf("Move disk %d from %c to %c\n", n, from, to); hanoi(n-1, via, to, from); } } int main() { int n = 3; // 三个盘子 hanoi(n, 'A', 'C', 'B'); return 0; } 代码中,hanoi函数用于求解汉诺塔问题,n表示盘子的个数,from表示起始柱子,to表示目标柱子,via表示中介柱子。在函数中,如果n等于1,则直接将盘子从起始柱子移动到目标柱子上;否则,递归地将n-1个盘子从起始柱子移动到中介柱子上,然后将最大的盘子从起始柱子移动到目标柱子上,最后递归地将n-1个盘子从中介柱子移动到目标柱子上。 在main函数中,首先定义了盘子的个数n,然后调用hanoi函数求解汉诺塔问题。 4. 总结 汉诺塔问题是经典的递归问题,通过递归算法可以简便地实现其求解过程。在实现时,需要注意递归的终止条件和递归调用的顺序。
汉诺塔是一个经典的递归问题,但也可以使用非递归算法来解决。下面是一个使用C语言实现的非递归算法: c #include <stdio.h> #include <stdlib.h> typedef struct { int n; char source, temp, dest; } State; typedef struct { State *array; int size; int top; } Stack; Stack *createStack(int size) { Stack *stack = (Stack *) malloc(sizeof(Stack)); stack->array = (State *) malloc(sizeof(State) * size); stack->size = size; stack->top = -1; return stack; } void push(Stack *stack, State state) { stack->array[++stack->top] = state; } State pop(Stack *stack) { return stack->array[stack->top--]; } void hanoi(int n, char source, char temp, char dest) { Stack *stack = createStack(n); push(stack, (State) {n, source, temp, dest}); while (stack->top >= 0) { State currentState = pop(stack); if (currentState.n == 1) { printf("Move disk from %c to %c\n", currentState.source, currentState.dest); } else { push(stack, (State) {currentState.n - 1, currentState.temp, currentState.source, currentState.dest}); push(stack, (State) {1, currentState.source, currentState.temp, currentState.dest}); push(stack, (State) {currentState.n - 1, currentState.source, currentState.dest, currentState.temp}); } } free(stack->array); free(stack); } int main() { int n; printf("Enter the number of disks: "); scanf("%d", &n); hanoi(n, 'A', 'B', 'C'); return 0; } 这个算法使用了一个栈来模拟递归的过程。首先将初始状态压入栈中,然后在每一次循环中取出栈顶状态进行处理。当只有一个盘子时,直接移动即可,否则将分解成三个子问题,分别将n-1个盘子从源柱移动到辅助柱,将最后一个盘子从源柱移动到目标柱,最后将n-1个盘子从辅助柱移动到目标柱。循环直到栈为空,即所有盘子都移动到了目标柱。 示例代码中的hanoi函数接受三个参数:n表示盘子的个数,source表示源柱,temp表示辅助柱,dest表示目标柱。在每一次移动盘子时,会打印出移动的步骤。 你可以在程序中输入想要的盘子数量,然后运行该程序来查看非递归算法的结果。
下面是使用 C 语言编写的非递归汉诺塔的代码: c #include <stdio.h> #include <stdlib.h> // 定义一个栈结构体 typedef struct { int *data; // 栈的数据存储区 int top; // 栈顶指针 int size; // 栈的容量 } Stack; // 初始化栈 void initStack(Stack *stack, int size) { stack->data = (int *) malloc(sizeof(int) * size); stack->top = -1; stack->size = size; } // 判断栈是否为空 int isEmpty(Stack *stack) { return stack->top == -1; } // 判断栈是否已满 int isFull(Stack *stack) { return stack->top == stack->size - 1; } // 入栈操作 void push(Stack *stack, int value) { if (isFull(stack)) { printf("Stack overflow!\n"); return; } stack->data[++stack->top] = value; } // 出栈操作 int pop(Stack *stack) { if (isEmpty(stack)) { printf("Stack underflow!\n"); return -1; } return stack->data[stack->top--]; } // 非递归实现汉诺塔移动操作 void hanoi(int n) { Stack s1, s2, s3; // 定义三个栈 initStack(&s1, n); // 初始化第一个栈 initStack(&s2, n); // 初始化第二个栈 initStack(&s3, n); // 初始化第三个栈 int i, x, from, to, tmp; // 定义临时变量 for (i = n; i >= 1; i--) { push(&s1, i); // 初始化第一个栈 } if (n % 2 == 0) { // 判断奇偶性 tmp = s2.top; s2.top = s3.top; s3.top = tmp; from = 1; to = 2; } else { tmp = s1.top; s1.top = s3.top; s3.top = tmp; from = 1; to = 3; } int step = 0; while (s3.top != n - 1) { switch (step % 3) { case 0: // 第一步 if (!isEmpty(&s1)) { x = pop(&s1); push(&s2, x); printf("%d -> %d\n", from, to); } else { x = pop(&s2); push(&s1, x); printf("%d -> %d\n", to, from); } if (x % 2 == 0) { if (from == 1) { to = 3; } else { to = 1; } } else { if (from == 1) { to = 2; } else { to = 1; } } from = 3 - from - to; break; case 1: // 第二步 if (!isEmpty(&s1) && (isEmpty(&s2) || s1.data[s1.top] < s2.data[s2.top])) { x = pop(&s1); push(&s2, x); printf("%d -> %d\n", from, to); } else { x = pop(&s2); push(&s1, x); printf("%d -> %d\n", to, from); } if (x % 2 == 0) { if (from == 1) { to = 3; } else { to = 1; } } else { if (from == 1) { to = 2; } else { to = 1; } } from = 3 - from - to; break; case 2: // 第三步 if (!isEmpty(&s1)) { x = pop(&s1); push(&s3, x); printf("%d -> %d\n", from, to); } else { x = pop(&s3); push(&s1, x); printf("%d -> %d\n", to, from); } if (x % 2 == 0) { if (from == 1) { to = 3; } else { to = 1; } } else { if (from == 1) { to = 2; } else { to = 1; } } from = 3 - from - to; break; } step++; } } int main() { int n; printf("Enter the number of disks: "); scanf("%d", &n); hanoi(n); return 0; } 这个非递归算法模拟了汉诺塔的移动过程,使用了三个栈来模拟三个柱子,通过不断出栈和入栈操作,实现了汉诺塔的移动。
好的,以下是C语言栈完成汉诺塔算法的示例代码: c #include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 typedef struct { int elem[MAXSIZE]; int top; } Stack; void InitStack(Stack *S) { S->top = -1; } int StackEmpty(Stack *S) { if (S->top == -1) { return 1; } else { return 0; } } int Push(Stack *S, int e) { if (S->top == MAXSIZE - 1) { return 0; } else { S->top++; S->elem[S->top] = e; return 1; } } int Pop(Stack *S, int *e) { if (StackEmpty(S)) { return 0; } else { *e = S->elem[S->top]; S->top--; return 1; } } void move(char x, char y) { printf("%c -> %c\n", x, y); } void Hanoi(int n, char x, char y, char z) { Stack S; InitStack(&S); int e; Push(&S, n); while (!StackEmpty(&S)) { while (Pop(&S, &e) && e > 1) { Push(&S, e - 1); Push(&S, 0); Push(&S, e - 1); } if (e == 1) { move(x, z); } while (Pop(&S, &e) && e == 0) { move(x, y); Push(&S, 0); } if (e > 1) { Push(&S, e - 1); move(x, z); Push(&S, 0); Push(&S, e - 1); } } } int main() { int n; printf("请输入盘子的个数:"); scanf("%d", &n); Hanoi(n, 'A', 'B', 'C'); return 0; } 在这个示例代码中,我们使用了栈来模拟汉诺塔算法中的递归过程。具体来说,我们定义了一个栈结构体,包括一个数组和一个栈顶指针。我们使用栈来记录每个递归函数调用时的参数,以及返回时需要执行的操作。其中,当栈顶元素为0时,表示需要将上一个元素从x移动到y;当栈顶元素为正整数时,表示需要将上一个元素从x移动到z,并将下一个元素从x移动到y。 在主函数中,我们首先读取用户输入的盘子个数,然后调用Hanoi函数进行汉诺塔求解。在Hanoi函数中,我们首先将汉诺塔问题的初始状态压入栈中,然后进入循环,直到栈为空。在循环中,我们首先将栈顶元素不断拆分,直到其变为1,表示可以直接将盘子从x移动到z。然后,我们将栈中的0全部弹出,将上一个元素从x移动到y,并将0压入栈中。最后,如果栈顶元素大于1,则将其拆分,并将上一个元素从x移动到z。最终,当栈为空时,汉诺塔问题的求解完成。 希望这个示例代码能够帮助你理解使用栈完成汉诺塔算法的思路。
塔问题的步骤数是多少? 对于汉诺塔问题,步骤数为 2^n - 1,其中 n 为盘子的数量。通过 c 语言的非递归算法可以使用栈来实现。具体实现代码可以参考以下示例: #include <stdio.h> #include <stdlib.h> #include #define MAX_DISKS 20 typedef struct { int n, r, i, j; } Frame; typedef struct { int *data; int capacity; int top; } Stack; void stack_init(Stack *s, int capacity) { s->capacity = capacity; s->data = (int*) malloc(sizeof(int) * capacity); s->top = -1; } void stack_push(Stack *s, int value) { if (s->top == s->capacity - 1) { printf("stack overflow\n"); exit(1); } s->data[++s->top] = value; } int stack_pop(Stack *s) { if (s->top == -1) { printf("stack underflow\n"); exit(1); } return s->data[s->top--]; } void hanoi(int n) { Stack s; Frame frame; stack_init(&s, n + 1); stack_push(&s, INT_MAX); frame.n = n; frame.r = 1; while (frame.n > 0 || s.top != 0) { if (frame.n > 0) { stack_push(&s, frame.n); frame.i = 1; frame.j = 2; frame.n -= 1; } else { frame.n = stack_pop(&s); if (frame.n == INT_MAX) break; frame.r = stack_pop(&s); frame.i = 6 - frame.r - frame.i; printf("Move disk %d from rod %d to rod %d\n", frame.n, frame.i, frame.j); frame.n -= 1; frame.r = frame.i; } } } int main() { int n; printf("Enter the number of disks: "); scanf("%d", &n); hanoi(n); printf("Steps: %d\n", (1 << n) - 1); return 0; } 注意事项: - 栈的使用可以避免递归函数调用带来的额外开销。 - 栈的容量需要预估,如果没有预估到位,可能会导致栈溢出。

最新推荐

汉诺塔递归算法--C语言

汉诺塔递归算法: 问题抽象  3个塔,n个碟子  初始:所有碟子放在1号塔,大的在底下,小的在上面  任务:把碟子移动到2号塔,顺序不变, 可用3号塔辅助  限制  每次只能移动一个碟子  总是大碟子...

信号与系统matlab实现卷积

多方法验证时域混叠,离散卷积、循环卷积

认识计算机, 二进制转换

进制转换

ITIL考试中文试题.pdf

ITIL考试中文试题 内容丰富 稳过

生物信息学简明教程-it-ebooks

生物信息学简明教程_it-ebooks

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

特邀编辑特刊:安全可信计算

10特刊客座编辑安全和可信任计算0OZGUR SINANOGLU,阿布扎比纽约大学,阿联酋 RAMESHKARRI,纽约大学,纽约0人们越来越关注支撑现代社会所有信息系统的硬件的可信任性和可靠性。对于包括金融、医疗、交通和能源在内的所有关键基础设施,可信任和可靠的半导体供应链、硬件组件和平台至关重要。传统上,保护所有关键基础设施的信息系统,特别是确保信息的真实性、完整性和机密性,是使用在被认为是可信任和可靠的硬件平台上运行的软件实现的安全协议。0然而,这一假设不再成立;越来越多的攻击是0有关硬件可信任根的报告正在https://isis.poly.edu/esc/2014/index.html上进行。自2008年以来,纽约大学一直组织年度嵌入式安全挑战赛(ESC)以展示基于硬件的攻击对信息系统的容易性和可行性。作为这一年度活动的一部分,ESC2014要求硬件安全和新兴技术�

ax1 = fig.add_subplot(221, projection='3d')如何更改画布的大小

### 回答1: 可以使用`fig.set_size_inches()`方法来更改画布大小。例如,如果想要将画布大小更改为宽8英寸,高6英寸,可以使用以下代码: ``` fig.set_size_inches(8, 6) ``` 请注意,此方法必须在绘图之前调用。完整代码示例: ``` import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() fig.set_size_inches(8, 6) ax1 = fig.add_subplot(221, project

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

特邀编辑导言:片上学习的硬件与算法

300主编介绍:芯片上学习的硬件和算法0YU CAO,亚利桑那州立大学XINLI,卡内基梅隆大学TAEMINKIM,英特尔SUYOG GUPTA,谷歌0近年来,机器学习和神经计算算法取得了重大进展,在各种任务中实现了接近甚至优于人类水平的准确率,如基于图像的搜索、多类别分类和场景分析。然而,大多数方法在很大程度上依赖于大型数据集的可用性和耗时的离线训练以生成准确的模型,这在许多处理大规模和流式数据的应用中是主要限制因素,如工业互联网、自动驾驶车辆和个性化医疗分析。此外,这些智能算法的计算复杂性仍然对最先进的计算平台构成挑战,特别是当所需的应用受到功耗低、吞吐量高、延迟小等要求的严格限制时。由于高容量、高维度和高速度数据,最近传感器技术的进步进一步加剧了这种情况。0在严格的条件下支持芯片上学习和分类的挑战0性�