score = model.evaluate(test_generator, verbose=0)中score的计算公式是什么
时间: 2024-04-01 18:37:47 浏览: 89
在Keras中,`evaluate`函数返回的`score`是由模型在测试集上的评估指标计算得到的。评估指标可以在编译模型时通过`compile`函数进行指定,常见的评估指标包括准确率、损失函数等。如果模型使用了多个评估指标,那么`score`将是一个包含多个指标分数的列表。
在计算单个评估指标时,`score`的计算公式将根据指标类型不同而不同。例如,对于分类问题的准确率评估,`score`计算公式为:
$$score = \frac{\text{正确预测的样本数}}{\text{总样本数}}$$
而对于回归问题中的均方误差评估,`score`计算公式为:
$$score = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$
其中,$y_i$表示真实标签,$\hat{y}_i$表示预测标签,$n$表示样本数。
相关问题
# 评估模型 score = model.evaluate(test_generator, verbose=0) metrics_names = model.metrics_names accuracy_index = metrics_names.index('accuracy') print('Accuracy:', score[accuracy_index])
这段代码的作用是评估模型在测试数据集上的性能表现,并输出模型在测试数据集上的准确率。其中,`model.evaluate(test_generator, verbose=0)`使用测试生成器`test_generator`来对模型进行评估,返回一个包含多个指标得分的列表`score`,`model.metrics_names`返回模型使用的所有指标的名称,`accuracy_index = metrics_names.index('accuracy')`获取准确率指标的索引,最后通过`print('Accuracy:', score[accuracy_index])`输出准确率得分。
from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False ) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples / batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples / batch_size, verbose=2, workers=12 ) score = model.evaluate_generator(validation_generator, nb_validation_samples / batch_size) scores = model.predict_generator(validation_generator, nb_validation_samples / batch_size)看看这段代码有什么错误
在段代码中,有一些错误和需要注意的地方:
1. `img_width` 和 `img_height` 变量没有被定义,需要先定义它们的值。
2. `OUT_CATAGORIES` 变量也没有被定义,需要给它赋值。
3. 在使用 `train_generator` 和 `validation_generator` 时,`steps_per_epoch` 和 `validation_steps` 应该为整数值,而不是浮点数。可以使用 `//` 运算符来进行整除操作。
4. 在评估模型的性能时,`evaluate_generator` 和 `predict_generator` 方法的参数应该是整数值,而不是浮点数。可以使用 `int()` 函数来将浮点数转换为整数。
下面是修改后的代码:
```python
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense
img_width, img_height = 256, 256
batch_size = 16
epochs = 50
train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train'
validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1'
OUT_CATAGORIES = 1
nb_train_samples = 2000
nb_validation_samples = 100
base_model = applications.VGG16(weights='imagenet',
include_top=False,
input_shape=(img_width, img_height, 3))
base_model.summary()
for layer in base_model.layers[:15]:
layer.trainable = False
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid'))
model = Model(inputs=base_model.input,
outputs=top_model(base_model.output))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9),
metrics=['accuracy'])
train_datagen = ImageDataGenerator(rescale=1. / 255,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
shuffle=False)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=2,
workers=12)
score = model.evaluate_generator(validation_generator, int(nb_validation_samples / batch_size))
scores = model.predict_generator(validation_generator, int(nb_validation_samples / batch_size))
```
阅读全文