Deep Learning Toolbox Model for AlexNet Network
时间: 2023-08-21 08:02:36 浏览: 20
To create an AlexNet model in the Deep Learning Toolbox, you can use the following code:
```matlab
layers = [
imageInputLayer([227 227 3])
convolution2dLayer(11, 96, "Stride", 4, "Padding", 0)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(3, "Stride", 2)
convolution2dLayer(5, 256, "Stride", 1, "Padding", 2)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(3, "Stride", 2)
convolution2dLayer(3, 384, "Stride", 1, "Padding", 1)
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 384, "Stride", 1, "Padding", 1)
batchNormalizationLayer
reluLayer
convolution2dLayer(3, 256, "Stride", 1, "Padding", 1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(3, "Stride", 2)
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(1000)
softmaxLayer
classificationLayer];
net = trainNetwork(trainData,layers,options);
```
This code defines the layers of the AlexNet model using the layer functions from the Deep Learning Toolbox. The `trainNetwork` function is then used to train the model using a set of training data and specific training options. Note that you will need to adjust the input and output layers to match your specific input and output data.
相关推荐
















