huffman编码matlab
时间: 2023-10-16 17:10:29 浏览: 116
1-matlab实现Huffman编码.pdf
Huffman编码是一种用于压缩数据的算法,它利用字符出现的频率来决定每个字符的编码方式,使得出现频率较高的字符具有较短的编码,从而实现数据压缩的效果。
以下是一个简单的Huffman编码的Matlab实现:
```matlab
function [codes, dict] = huffman_encoding(symbols, prob)
% symbols: a cell array of symbols to be encoded
% prob: a vector of probabilities for each symbol
% Step 1: Create a min-heap of probability nodes
n = length(symbols);
heap = cell(n, 1);
for i = 1:n
heap{i} = struct('symbol', symbols{i}, 'prob', prob(i));
end
heap = min_heap_build(heap);
% Step 2: Build the Huffman tree
while heap.count > 1
node1 = min_heap_pop(heap);
node2 = min_heap_pop(heap);
new_node = struct('symbol', [], 'prob', node1.prob + node2.prob, ...
'left', node1, 'right', node2);
min_heap_push(heap, new_node);
end
root = min_heap_pop(heap);
% Step 3: Traverse the tree to generate codes
codes = cell(n, 1);
dict = struct();
traverse(root, '', codes, dict);
function traverse(node, code, codes, dict)
if isempty(node.symbol)
traverse(node.left, [code '0'], codes, dict);
traverse(node.right, [code '1'], codes, dict);
else
codes{node.symbol} = code;
dict.(node.symbol) = code;
end
end
end
% Helper functions for min-heap operations
function heap = min_heap_build(nodes)
n = length(nodes);
heap = struct('nodes', nodes, 'count', n);
for i = floor(n/2):-1:1
min_heapify(heap, i);
end
end
function min_heap_push(heap, node)
heap.count = heap.count + 1;
heap.nodes{heap.count} = node;
i = heap.count;
while i > 1 && heap.nodes{i}.prob < heap.nodes{parent(i)}.prob
swap(heap, i, parent(i));
i = parent(i);
end
end
function node = min_heap_pop(heap)
node = heap.nodes{1};
heap.nodes{1} = heap.nodes{heap.count};
heap.count = heap.count - 1;
min_heapify(heap, 1);
end
function min_heapify(heap, i)
l = left(i);
r = right(i);
smallest = i;
if l <= heap.count && heap.nodes{l}.prob < heap.nodes{smallest}.prob
smallest = l;
end
if r <= heap.count && heap.nodes{r}.prob < heap.nodes{smallest}.prob
smallest = r;
end
if smallest ~= i
swap(heap, i, smallest);
min_heapify(heap, smallest);
end
end
function swap(heap, i, j)
temp = heap.nodes{i};
heap.nodes{i} = heap.nodes{j};
heap.nodes{j} = temp;
end
function p = parent(i)
p = floor(i/2);
end
function l = left(i)
l = 2*i;
end
function r = right(i)
r = 2*i+1;
end
```
使用方法:
```matlab
symbols = {'A', 'B', 'C', 'D', 'E'};
prob = [0.2, 0.25, 0.15, 0.1, 0.3];
[codes, dict] = huffman_encoding(symbols, prob);
```
其中`symbols`是要编码的字符数组,`prob`是每个字符出现的概率。函数返回值`codes`是每个字符的Huffman编码,`dict`是一个结构体,可以通过`dict.(symbol)`的方式获取某个字符的编码。
阅读全文