python对csv数据集实现贝叶斯算法
时间: 2024-01-30 22:03:38 浏览: 80
下面是一个简单的示例代码,用于演示如何使用Python中的贝叶斯算法来分类CSV数据集:
```python
import csv
import math
# 读取CSV文件
def load_csv(filename):
dataset = []
with open(filename, 'r') as file:
csv_reader = csv.reader(file)
for row in csv_reader:
dataset.append(row)
return dataset
# 将字符串列转换为浮点数列
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())
# 将字符串列转换为整数列
def str_column_to_int(dataset, column):
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = {}
for i, value in enumerate(unique):
lookup[value] = i
for row in dataset:
row[column] = lookup[row[column]]
return lookup
# 将数据集分成n个折叠
def cross_validation_split(dataset, n_folds):
fold_size = int(len(dataset) / n_folds)
folds = []
dataset_copy = list(dataset)
for i in range(n_folds):
fold = []
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
folds.append(fold)
return folds
# 计算每个类别的概率
def class_probabilities(dataset):
total_instances = len(dataset)
probabilities = {}
for row in dataset:
class_value = row[-1]
if class_value not in probabilities:
probabilities[class_value] = 0
probabilities[class_value] += 1
for class_value, count in probabilities.items():
probabilities[class_value] = count / total_instances
return probabilities
# 计算Gaussian分布的概率密度函数
def calculate_probability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
# 计算每个属性在每个类别中的均值和标准差
def summarize_dataset(dataset):
summaries = [(mean(column), stdev(column)) for column in zip(*dataset)]
del(summaries[-1])
return summaries
# 计算均值
def mean(numbers):
return sum(numbers)/float(len(numbers))
# 计算标准差
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
# 将数据集分成类别
def separate_by_class(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
class_value = vector[-1]
if (class_value not in separated):
separated[class_value] = []
separated[class_value].append(vector)
return separated
# 计算每个属性在每个类别中的均值和标准差
def summarize_by_class(dataset):
separated = separate_by_class(dataset)
summaries = {}
for class_value, rows in separated.items():
summaries[class_value] = summarize_dataset(rows)
return summaries
# 使用贝叶斯算法进行分类
def calculate_class_probabilities(summaries, input_vector):
probabilities = {}
for class_value, class_summaries in summaries.items():
probabilities[class_value] = 1
for i in range(len(class_summaries)):
mean, stdev = class_summaries[i]
x = input_vector[i]
probabilities[class_value] *= calculate_probability(x, mean, stdev)
return probabilities
# 对数据集进行分类
def predict(summaries, input_vector):
probabilities = calculate_class_probabilities(summaries, input_vector)
best_label, best_prob = None, -1
for class_value, probability in probabilities.items():
if best_label is None or probability > best_prob:
best_prob = probability
best_label = class_value
return best_label
# 评估算法
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = []
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = []
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
# 计算分类的准确度
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual))
# 主函数
def main():
# 加载数据集
dataset = load_csv('dataset.csv')
for i in range(len(dataset[0])-1):
str_column_to_float(dataset, i)
# 将类别转换为整数
str_column_to_int(dataset, len(dataset[0])-1)
# 评估算法
n_folds = 5
scores = evaluate_algorithm(dataset, naive_bayes, n_folds)
print('Accuracy: %.3f%%' % (sum(scores)/float(len(scores)) * 100))
if __name__ == '__main__':
main()
```
需要注意的是,这是一个简单的示例代码,不一定适用于所有的CSV数据集。对于不同的数据集,可能需要进行一些调整和优化。
阅读全文