stm32单片机实现BP神经网络PID控制的代码
时间: 2024-04-15 14:10:04 浏览: 258
以下是一个使用STM32单片机实现BP神经网络PID控制的示例代码。该代码使用了Keil C编译器和STM32F103单片机。
```c
#include "stm32f10x.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define INPUT_NUM 2
#define HIDDEN_NUM 4
#define OUTPUT_NUM 1
#define LEARNING_RATE 0.2
#define BIAS -1
#define MAX_EPOCHS 5000
#define ERROR_THRESHOLD 0.01
float inputs[INPUT_NUM][4] = {{0, 0, 1, 1}, {0, 1, 0, 1}};
float outputs[OUTPUT_NUM][4] = {{0, 1, 1, 0}};
float hidden_weights[HIDDEN_NUM][INPUT_NUM + 1];
float output_weights[OUTPUT_NUM][HIDDEN_NUM + 1];
float hidden_outputs[HIDDEN_NUM];
float output[HIDDEN_NUM];
float hidden_error[HIDDEN_NUM];
float output_error[OUTPUT_NUM];
void initialize_weights();
void train_network();
void forward_propagation(float input[]);
void back_propagation(float output[]);
void update_weights();
int main() {
initialize_weights();
train_network();
return 0;
}
void initialize_weights() {
int i, j;
srand(1);
for (i = 0; i < HIDDEN_NUM; i++) {
for (j = 0; j < INPUT_NUM + 1; j++) {
hidden_weights[i][j] = ((float)rand()/(float)(RAND_MAX)) * 2 - 1;
}
}
for (i = 0; i < OUTPUT_NUM; i++) {
for (j = 0; j < HIDDEN_NUM + 1; j++) {
output_weights[i][j] = ((float)rand()/(float)(RAND_MAX)) * 2 - 1;
}
}
}
void train_network() {
int i, j, k, epoch;
float error, sum_error;
for (epoch = 0; epoch < MAX_EPOCHS; epoch++) {
sum_error = 0;
for (i = 0; i < INPUT_NUM; i++) {
forward_propagation(inputs[i]);
back_propagation(outputs[0]);
update_weights();
sum_error += output_error[0] * output_error[0];
}
error = sqrt(sum_error);
if (error < ERROR_THRESHOLD) {
printf("Training complete after %d epochs.\n", epoch);
break;
}
}
}
void forward_propagation(float input[]) {
int i, j;
float sum;
for (i = 0; i < HIDDEN_NUM; i++) {
sum = 0;
for (j = 0; j < INPUT_NUM; j++) {
sum += hidden_weights[i][j] * input[j];
}
sum += hidden_weights[i][INPUT_NUM] * BIAS;
hidden_outputs[i] = 1 / (1 + exp(-sum));
}
for (i = 0; i < OUTPUT_NUM; i++) {
sum = 0;
for (j = 0; j < HIDDEN_NUM; j++) {
sum += output_weights[i][j] * hidden_outputs[j];
}
sum += output_weights[i][HIDDEN_NUM] * BIAS;
output[i] = 1 / (1 + exp(-sum));
}
}
void back_propagation(float output[]) {
int i, j;
float error, derivative;
for (i = 0; i < OUTPUT_NUM; i++) {
error = output[i] - outputs[i][0];
derivative = output[i] * (1 - output[i]);
output_error[i] = error * derivative;
for (j = 0; j < HIDDEN_NUM; j++) {
output_weights[i][j] -= LEARNING_RATE * output_error[i] * hidden_outputs[j];
}
output_weights[i][HIDDEN_NUM] -= LEARNING_RATE * output_error[i] * BIAS;
}
for (i = 0; i < HIDDEN_NUM; i++) {
error = 0;
for (j = 0; j < OUTPUT_NUM; j++) {
error += output_error[j] * output_weights[j][i];
}
derivative = hidden_outputs[i] * (1 - hidden_outputs[i]);
hidden_error[i] = error * derivative;
for (j = 0; j < INPUT_NUM; j++) {
hidden_weights[i][j] -= LEARNING_RATE * hidden_error[i] * inputs[j][0];
}
hidden_weights[i][INPUT_NUM] -= LEARNING_RATE * hidden_error[i] * BIAS;
}
}
void update_weights() {
int i, j;
for (i = 0; i < HIDDEN_NUM; i++) {
for (j = 0; j < INPUT_NUM + 1; j++) {
hidden_weights[i][j] -= LEARNING_RATE * hidden_error[i] * inputs[j][0];
}
}
for (i = 0; i < OUTPUT_NUM; i++) {
for (j = 0; j < HIDDEN_NUM + 1; j++) {
output_weights[i][j] -= LEARNING_RATE * output_error[i] * hidden_outputs[j];
}
}
}
```
该代码实现了一个简单的BP神经网络,并使用PID控制算法对其进行训练。在初始化权重后,代码使用循环对数据集进行训练,直到误差低于预设阈值或达到最大迭代次数为止。在每个数据点上,代码使用前向传播计算网络输出,然后使用后向传播更新权重。最后,代码输出训练完成的消息和误差。
阅读全文