self.optimizer = torch.optim.Adam([ {'params': self.model.parameters()} ], lr=args.lr)
时间: 2024-04-20 09:24:06 浏览: 153
这行代码的作用是创建一个 Adam 优化器并将其赋值给 self.optimizer 变量。Adam 优化器是一种常用的梯度下降优化算法,用于更新模型参数以最小化损失函数。在这里,我们将 self.model.parameters() 作为参数传入 Adam 优化器,表示我们希望优化器更新 self.model 中的所有参数。lr=args.lr 是学习率的设置,lr 是从 args 对象的属性中获取的。学习率控制了每次参数更新的步长大小,影响模型训练的速度和性能。
相关问题
assert(args.solver in ['adam', 'sgd']) print('=> setting {} solver'.format(args.solver)) param_groups = [{'params': model.module.bias_parameters(), 'weight_decay': args.bias_decay}, {'params': model.module.weight_parameters(), 'weight_decay': args.weight_decay}] if args.solver == 'adam': optimizer = torch.optim.Adam(param_groups, args.lr, betas=(args.momentum, args.beta)) elif args.solver == 'sgd': optimizer = torch.optim.SGD(param_groups, args.lr, momentum=args.momentum)
这段代码用于选择并配置优化器(optimizer)来优化模型的参数。
首先,使用`assert`语句来确保`args.solver`的值是`'adam'`或`'sgd'`,如果不是,程序会抛出一个AssertionError。
接下来,根据`args.solver`的值选择相应的优化器,并打印出所选择的优化器。代码块中的if-elif条件语句用于根据`solver`的值来选择优化器,分别是Adam和SGD。
然后,根据模型的参数进行分组,并为每个参数组设置权重衰减(weight_decay)。这里使用了`model.module.bias_parameters()`和`model.module.weight_parameters()`来获取模型中的偏置参数和权重参数。
最后,根据选择的优化器和参数组,创建一个优化器对象,并传入学习率(args.lr),以及其他特定于优化器的参数(如Adam的betas或SGD的momentum)。
通过这段代码,可以根据命令行参数(args)选择并配置不同的优化器来训练模型。
class Train(nn.Module): def __init__(self,args,dataset): super(Train, self).__init__() self.args = args self.D = dataset self.entity_vec = nn.Embedding(self.D.entity_num,args.emb_dim) self.concept_vec = nn.Embedding(self.D.concept_num,args.emb_dim+1) self.relation_vec = nn.Embedding(self.D.relation_num,args.emb_dim) self.optimizer = torch.optim.SGD(self.parameters(),lr=args.lr) nn.init.normal_(self.entity_vec.weight.data, 0.0, 1.0 / args.emb_dim) nn.init.normal_(self.relation_vec.weight.data, 0.0, 1.0 / args.emb_dim) nn.init.normal_(self.concept_vec.weight.data[:, :-1], 0.0, 1.0 / args.emb_dim) nn.init.uniform_(self.concept_vec.weight.data[:, -1], 0.0, 1.0)
这是一个使用 PyTorch 实现的知识图谱嵌入模型,包含三个嵌入层:entity_vec、concept_vec 和 relation_vec。使用 nn.Embedding 可以将实体、概念和关系映射到低维空间中的向量表示。其中,entity_vec 和 relation_vec 的权重矩阵使用正态分布进行初始化,而 concept_vec 的权重矩阵的前 n-1 列也使用正态分布进行初始化,最后一列使用均匀分布进行初始化。该模型还定义了一个 SGD 优化器用于训练模型。此外,该模型还包含一个 self.D 参数,用于传入数据集。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)