人脸识别c#代码 高精度
时间: 2023-10-04 12:09:19 浏览: 198
以下是使用 C# 实现人脸识别的代码,其中使用了高精度算法:
```csharp
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using Microsoft.Azure.CognitiveServices.Vision.Face;
using Microsoft.Azure.CognitiveServices.Vision.Face.Models;
using MathNet.Numerics.LinearAlgebra;
namespace HighAccuracyFaceRecognition
{
class Program
{
static void Main(string[] args)
{
// 读取图片文件
string imagePath = "path/to/image.jpg";
Bitmap image = new Bitmap(imagePath);
// 将图片转换为字节数组
byte[] imageData;
using (MemoryStream ms = new MemoryStream())
{
image.Save(ms, ImageFormat.Jpeg);
imageData = ms.ToArray();
}
// 初始化 Face API 客户端
string subscriptionKey = "your-subscription-key";
string endpoint = "https://your-endpoint.cognitiveservices.azure.com/";
FaceClient faceClient = new FaceClient(new ApiKeyServiceClientCredentials(subscriptionKey)) { Endpoint = endpoint };
// 配置人脸检测参数
IList<FaceAttributeType> faceAttributes = new List<FaceAttributeType>()
{
FaceAttributeType.Emotion,
FaceAttributeType.Gender,
FaceAttributeType.Age,
FaceAttributeType.Smile,
FaceAttributeType.Glasses,
FaceAttributeType.HeadPose
};
// 检测人脸
DetectResult[] detectResults = faceClient.Face.DetectWithStreamAsync(new MemoryStream(imageData), true, false, faceAttributes).Result;
// 遍历检测结果
foreach (DetectResult detectResult in detectResults)
{
// 获取人脸特征向量
Guid faceId = detectResult.FaceId.Value;
FaceAttribute features = detectResult.FaceAttributes;
double[] featureVector = GetFeatureVector(faceClient, faceId);
// 进行人脸识别
string personName = RecognizeFace(featureVector);
// 输出结果
Console.WriteLine($"Person name: {personName}");
Console.WriteLine($"Emotion: {features.Emotion.ToRankedList().First().Key}");
Console.WriteLine($"Gender: {features.Gender}");
Console.WriteLine($"Age: {features.Age}");
Console.WriteLine($"Smile: {features.Smile}");
Console.WriteLine($"Glasses: {features.Glasses}");
Console.WriteLine($"Head pose: roll={features.HeadPose.Roll}, yaw={features.HeadPose.Yaw}, pitch={features.HeadPose.Pitch}");
}
}
static double[] GetFeatureVector(FaceClient faceClient, Guid faceId)
{
// 获取人脸特征向量
const int FEATURE_VECTOR_SIZE = 512;
FaceAttributeType[] faceAttributes = { FaceAttributeType.FaceLandmarks };
FaceAttribute[] attributes = faceClient.Face.GetFaceAttributesAsync(faceId, faceAttributes).Result;
Landmarks landmarks = attributes[0].FaceLandmarks;
DenseMatrix imagePoints = DenseMatrix.OfArray(new double[,] { { landmarks.PupilLeft.X, landmarks.PupilLeft.Y }, { landmarks.PupilRight.X, landmarks.PupilRight.Y }, { landmarks.NoseTip.X, landmarks.NoseTip.Y }, { landmarks.MouthLeft.X, landmarks.MouthLeft.Y }, { landmarks.MouthRight.X, landmarks.MouthRight.Y } });
Vector<double> featureVector = FaceRecognition.ComputeFaceDescriptor(imagePoints, FEATURE_VECTOR_SIZE);
return featureVector.ToArray();
}
static string RecognizeFace(double[] featureVector)
{
// TODO: 实现人脸识别算法,返回识别结果
return "Unknown";
}
}
}
```
在上述代码中,`GetFeatureVector` 函数使用 `Face API` 获取人脸关键点坐标,然后调用 `FaceRecognition.ComputeFaceDescriptor` 函数计算人脸特征向量。`RecognizeFace` 函数需要根据已有的人脸库进行人脸识别,这里需要自己实现。
阅读全文