import numpy as np def transformation(array,image_size=0): ite = int((image_size/2)+1) print(ite) for num in range(1, ite): array[(num*2)-1] = array[(num*2)-1, ::-1] return array解释这个代码

时间: 2023-06-03 12:02:38 浏览: 74
这是一个 Python 代码,其中定义了一个名为 transformation 的函数,使用了NumPy模块。该函数的作用是将输入的数组进行变换,并返回变换后的数组。 该函数接受两个参数,第一个是要进行变换的数组,第二个是图片尺寸,默认为0。在函数中,首先计算了变换所需迭代的次数(ite)。 接下来,通过循环从1到ite,对数组进行变换操作。变换操作是将数组的奇数列((num*2)-1)进行水平翻转(::-1)。 最后,该函数返回变换后的数组。
相关问题

import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import matplotlib.pyplot as plt import input_data import model import numpy as np import xlsxwriter num_threads = 4 def evaluate_one_image(): test_dir = 'data/test/' import glob import xlwt test_img = glob.glob(test_dir + '*.jpg') workbook = xlsxwriter.Workbook('formatting.xlsx') worksheet = workbook.add_worksheet('My Worksheet') for index,img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) x = tf.placeholder(tf.float32, shape=[208, 208, 3]) logs_train_dir = 'log/' saver = tf.train.Saver() with tf.Session() as sess: prediction = sess.run(logit, feed_dict={x: image_array}) max_index = np.argmax(prediction) workbook.close() if __name__ == '__main__': evaluate_one_image()改为多线程运算

要将代码改为多线程运算,您可以使用 TensorFlow 的 `tf.train.Coordinator()` 和 `tf.train.start_queue_runners()` 来管理和启动多个线程。以下是修改后的代码示例: ```python import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import matplotlib.pyplot as plt import input_data import model import numpy as np import xlsxwriter num_threads = 4 def evaluate_one_image(image_array, index): with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) x = tf.placeholder(tf.float32, shape=[208, 208, 3]) logs_train_dir = 'log/' saver = tf.train.Saver() with tf.Session() as sess: prediction = sess.run(logit, feed_dict={x: image_array}) max_index = np.argmax(prediction) # 将结果写入 Excel 表格 workbook = xlsxwriter.Workbook('formatting.xlsx') worksheet = workbook.add_worksheet('My Worksheet') worksheet.write(index, 0, max_index) workbook.close() def evaluate_images(test_img): coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for index, img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) # 在每个线程中调用 evaluate_one_image() tf.compat.v1.threading.Thread(target=evaluate_one_image, args=(image_array, index)).start() # 请求停止所有线程 coord.request_stop() # 等待所有线程完成 coord.join(threads) if __name__ == '__main__': test_dir = 'data/test/' import glob import xlwt test_img = glob.glob(test_dir + '*.jpg') evaluate_images(test_img) ``` 在修改后的代码中,我们首先定义了一个新的函数 `evaluate_one_image()`,它接受图像数组和索引作为参数,表示要评估的单个图像。在这个函数中,我们将使用传递的图像数组进行评估操作。 然后,在 `evaluate_images()` 函数中,我们使用 `tf.train.Coordinator()` 和 `tf.train.start_queue_runners()` 启动了多个线程。在每个线程中,我们使用 `tf.compat.v1.threading.Thread()` 创建一个新的线程,并在其中调用 `evaluate_one_image()` 函数来评估图像。 最后,在主函数中通过调用 `evaluate_images()` 函数来启动评估过程。 这样,您就可以利用多线程同时评估多个图像了。 希望对您有帮助!如果您还有其他问题,请随时提问。

优化该段代码import numpy as np from PIL import Image def white_balance(image_path): img = Image.open(image_path).convert('RGB') img_np = np.array(img) r, g, b = np.mean(img_np[:, :, 0]), np.mean(img_np[:, :, 1]), np.mean(img_np[:, :, 2]) avg = (r + g + b) / 3 img_np[:, :, 0] = np.minimum(img_np[:, :, 0] * (avg / r), 255) img_np[:, :, 1] = np.minimum(img_np[:, :, 1] * (avg / g), 255) img_np[:, :, 2] = np.minimum(img_np[:, :, 2] * (avg / b), 255) new_img = Image.fromarray(np.uint8(img_np)) return new_img并且保存图像

可以尝试以下优化: 1. 使用 `np.mean()` 计算图片的平均值,可以使用 `np.average()` 或者 `np.mean(axis=(0,1))` 代替,后者可以减少一个维度的计算,提高效率。 2. 在计算 `avg` 时,可以使用 `np.mean()` 计算三个通道的平均值,这样可以减少一次加法计算,提高效率。 3. 对于数组的运算,可以使用 NumPy 提供的函数,如 `np.multiply()`,这样可以利用 NumPy 的向量化计算,提高效率。 4. 在创建新的图片时,可以指定图片的格式,如 `Image.fromarray(np.uint8(img_np), mode='RGB')`,这样可以减少类型转换的时间。 优化后的代码如下: ```python import numpy as np from PIL import Image def white_balance(image_path): img = Image.open(image_path).convert('RGB') img_np = np.array(img) avg = np.mean(img_np, axis=(0,1)) img_np[:,:,0] = np.minimum(np.multiply(img_np[:,:,0], avg[1]/avg[0]), 255) img_np[:,:,1] = np.minimum(np.multiply(img_np[:,:,1], avg[1]/avg[1]), 255) img_np[:,:,2] = np.minimum(np.multiply(img_np[:,:,2], avg[1]/avg[2]), 255) new_img = Image.fromarray(np.uint8(img_np), mode='RGB') new_img.save('new_image.jpg') return new_img ```

相关推荐

以下代码有什么错误,怎么修改: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import matplotlib.pyplot as plt import input_data import model import numpy as np import xlsxwriter num_threads = 4 def evaluate_one_image(): workbook = xlsxwriter.Workbook('formatting.xlsx') worksheet = workbook.add_worksheet('My Worksheet') with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) x = tf.placeholder(tf.float32, shape=[208, 208, 3]) logs_train_dir = 'log/' saver = tf.train.Saver() with tf.Session() as sess: print("从指定路径中加载模型...") ckpt = tf.train.get_checkpoint_state(logs_train_dir) if ckpt and ckpt.model_checkpoint_path: global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] saver.restore(sess, ckpt.model_checkpoint_path) print('模型加载成功, 训练的步数为: %s' % global_step) else: print('模型加载失败,checkpoint文件没找到!') prediction = sess.run(logit, feed_dict={x: image_array}) max_index = np.argmax(prediction) workbook.close() def evaluate_images(test_img): coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for index,img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) tf.compat.v1.threading.Thread(target=evaluate_one_image, args=(image_array, index)).start() coord.request_stop() coord.join(threads) if __name__ == '__main__': test_dir = 'data/test/' import glob import xlwt test_img = glob.glob(test_dir + '*.jpg') evaluate_images(test_img)

这段代码在运行时import SimpleITK as sitkimport numpy as npimport os# 设置文件路径data_path = 'C:/Users/Administrator/Desktop/LiTS2017/'save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017/'if not os.path.exists(save_path): os.makedirs(save_path)# 定义函数将3D图像保存为2D的.png格式def save_image_as_png(image, save_folder, name_prefix): for i in range(image.shape[2]): slice = np.squeeze(image[:, :, i]) slice = slice.astype(np.float32) slice *= 255.0/slice.max() slice = slice.astype(np.uint8) save_name = os.path.join(save_folder, name_prefix + '_' + str(i) + '.png') sitk.WriteImage(sitk.GetImageFromArray(slice), save_name)# 读取Training Batch 1中的图像image_path = os.path.join(data_path, 'Training Batch 1/volume-0.nii')image = sitk.ReadImage(image_path)image_array = sitk.GetArrayFromImage(image)save_folder = os.path.join(save_path, 'image')if not os.path.exists(save_folder): os.makedirs(save_folder)save_image_as_png(image_array, save_folder, 'img')# 读取Training Batch 2中的标签label_path = os.path.join(data_path, 'Training Batch 2/segmentation-0.nii')label = sitk.ReadImage(label_path)label_array = sitk.GetArrayFromImage(label)# 将标签转换为灰度图并保存label_array[label_array == 1] = 128label_array[label_array == 2] = 255save_folder = os.path.join(save_path, 'mask')if not os.path.exists(save_folder): os.makedirs(save_folder)save_image_as_png(label_array, save_folder, 'mask')会出现RuntimeWarning: divide by zero encountered in true_divide slice *= 255.0/slice.max()这种情况,修复它,并给出完整代码

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

import numpy as np # 假设x_train和y_train是训练数据和对应的标签 index = [i for i in range(len(x_train))] np.random.shuffle(index) x_train = x_train[index] y_train = y_train[index] # 继续进行模型训练...
recommend-type

multisim仿真电路实例700例.rar

multisim仿真电路图
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解