spark ML做智能菜品推荐代码
时间: 2023-08-10 15:43:33 浏览: 119
好的,以下是使用Spark ML中的分类算法实现智能菜品推荐的代码示例:
```python
# 导入必要的库
from pyspark.ml.feature import VectorAssembler, StringIndexer, OneHotEncoder
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml import Pipeline
from pyspark.sql.functions import col, udf
from pyspark.sql.types import DoubleType
# 读取数据集
data = spark.read.format("csv").option("header", "true").load("data/cuisine.csv")
# 数据预处理,将类别特征转换成数值特征
cuisineIndexer = StringIndexer(inputCol="cuisine", outputCol="label")
encoder = OneHotEncoder(inputCol="cuisineIndex", outputCol="cuisineVec")
assembler = VectorAssembler(inputCols=["cuisineVec", "ingredients"], outputCol="features")
# 划分训练集和测试集
(trainingData, testData) = data.randomSplit([0.7, 0.3])
# 使用随机森林算法训练模型
rf = RandomForestClassifier(labelCol="label", featuresCol="features", numTrees=10)
pipeline = Pipeline(stages=[cuisineIndexer, encoder, assembler, rf])
model = pipeline.fit(trainingData)
# 预测测试集中的菜品类别
predictions = model.transform(testData)
# 评估模型
evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction",
metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g" % (1.0 - accuracy))
# 定义udf函数,将类别特征转换成数值特征
cuisineIndex = StringIndexer(inputCol="cuisine", outputCol="cuisineIndex").fit(data)
encoder = OneHotEncoder(inputCol="cuisineIndex", outputCol="cuisineVec")
def cuisine_to_vec(cuisine):
return float(cuisineIndex.transform([(cuisine,)])[0][0])
cuisine_to_vec_udf = udf(cuisine_to_vec, DoubleType())
# 输入用户喜好的菜品类别和食材列表,输出推荐菜品的类别和食材列表
def recommend_cuisine(cuisine, ingredients):
df = spark.createDataFrame([(cuisine, ingredients)], ["cuisine", "ingredients"])
df = df.withColumn("cuisineIndex", cuisine_to_vec_udf(col("cuisine")))
df = encoder.transform(df)
df = assembler.transform(df)
predictions = model.transform(df).select("prediction").collect()
return cuisineIndex.labels[int(predictions[0][0])]
# 示例调用
recommend_cuisine("italian", ["tomato", "pasta", "olive oil"])
```
以上代码是基于Spark ML中的随机森林算法实现的智能菜品推荐,您可以根据自己的需求修改数据集和参数,以及调整模型的算法和参数。
阅读全文