利用Resnet50对灰度图片进行图像去噪,灰度图片形状为[16,1,50,50]
时间: 2024-05-07 15:19:54 浏览: 108
灰度图像滤波去噪算法
首先,由于Resnet50是针对彩色图像进行训练的,所以需要对灰度图像进行处理,将其转换为3通道图像。可以使用以下代码实现:
```python
import numpy as np
import cv2
# 将灰度图片转换为3通道图像
def gray2rgb(img_gray):
img_rgb = np.zeros((img_gray.shape[0], img_gray.shape[1], 3), dtype=np.uint8)
img_rgb[:, :, 0] = img_gray
img_rgb[:, :, 1] = img_gray
img_rgb[:, :, 2] = img_gray
return img_rgb
# 加载灰度图片
img_gray = np.random.rand(16, 1, 50, 50)
img_gray = np.uint8(img_gray * 255)
# 转换为3通道图像
img_rgb = np.zeros((16, 3, 50, 50), dtype=np.uint8)
for i in range(16):
img_rgb[i] = gray2rgb(img_gray[i, 0])
```
接下来,可以使用Resnet50模型进行图像去噪。由于Resnet50是针对图像分类任务进行训练的,所以需要对模型进行微调,以适应图像去噪任务。可以使用以下代码实现:
```python
import torch
import torch.nn as nn
import torchvision.models as models
# 定义Resnet50模型
class Resnet50(nn.Module):
def __init__(self):
super(Resnet50, self).__init__()
self.resnet50 = models.resnet50(pretrained=True)
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
nn.init.kaiming_normal_(self.conv1.weight, mode='fan_out', nonlinearity='relu')
self.resnet50.conv1 = self.conv1
def forward(self, x):
x = self.resnet50(x)
return x
# 定义图像去噪模型
class DenoiseModel(nn.Module):
def __init__(self):
super(DenoiseModel, self).__init__()
self.resnet50 = Resnet50()
self.conv = nn.Conv2d(1000, 1, kernel_size=1, stride=1, padding=0)
def forward(self, x):
x = self.resnet50(x)
x = self.conv(x)
return x
# 加载模型
model = DenoiseModel()
model.load_state_dict(torch.load('denoise_model.pth'))
# 图像去噪
img_rgb_tensor = torch.tensor(img_rgb).float() / 255.
with torch.no_grad():
output = model(img_rgb_tensor)
img_denoised = output.detach().numpy() * 255.
```
最后得到的img_denoised是去噪后的3通道图像,需要将其转换为灰度图像。可以使用以下代码实现:
```python
# 将3通道图像转换为灰度图像
def rgb2gray(img_rgb):
img_gray = np.zeros((img_rgb.shape[0], 1, img_rgb.shape[2], img_rgb.shape[3]), dtype=np.uint8)
img_gray[:, 0] = 0.2989 * img_rgb[:, 0] + 0.5870 * img_rgb[:, 1] + 0.1140 * img_rgb[:, 2]
return img_gray
# 转换为灰度图像
img_gray_denoised = rgb2gray(np.uint8(img_denoised))
```
阅读全文