遗传算法中排课权重设置代码
时间: 2023-09-03 16:10:40 浏览: 221
遗传算法中排课权重设置的代码会根据具体的场景和需求而有所不同,下面是一个可能的示例代码:
```python
# 假设有一个班级需要排课,每节课的时间为1小时,一周有5天,一天有8个时间段可用,总共可排课40节
class Schedule:
def __init__(self, genes):
self.genes = genes
self.fitness = 0
# 计算适应度
def calculate_fitness(self):
# 初始化权重
weight = {
'no_conflict': 20, # 无冲突
'teacher_availability': 10, # 教师有空
'room_availability': 10, # 教室有空
'balanced_schedule': 5, # 平衡的课程安排
'classroom_capacity': 5, # 教室容量
'teacher_workload': 5 # 教师工作量
}
# 计算每个权重的得分
no_conflict_score = self.check_conflict()
teacher_availability_score = self.check_teacher_availability()
room_availability_score = self.check_room_availability()
balanced_schedule_score = self.check_balanced_schedule()
classroom_capacity_score = self.check_classroom_capacity()
teacher_workload_score = self.check_teacher_workload()
# 计算总得分
self.fitness = weight['no_conflict']*no_conflict_score + weight['teacher_availability']*teacher_availability_score + \
weight['room_availability']*room_availability_score + weight['balanced_schedule']*balanced_schedule_score + \
weight['classroom_capacity']*classroom_capacity_score + weight['teacher_workload']*teacher_workload_score
# 检查是否有冲突
def check_conflict(self):
# 检查是否有同一时间段内在同一个教室上课
conflict = False
for i in range(40):
for j in range(i+1, 40):
if self.genes[i] == self.genes[j]:
if (i//8 == j//8) and (i%8 == j%8):
conflict = True
break
if conflict:
break
if conflict:
return 0
else:
return 1
# 检查教师是否有空
def check_teacher_availability(self):
# 检查每个教师在每个时间段是否有空
available = True
for i in range(40):
if not self.genes[i].teacher.is_available(i//8, i%8):
available = False
break
if available:
return 1
else:
return 0
# 检查教室是否有空
def check_room_availability(self):
# 检查每个教室在每个时间段是否有空
available = True
for i in range(40):
if not self.genes[i].room.is_available(i//8, i%8):
available = False
break
if available:
return 1
else:
return 0
# 检查课程安排是否平衡
def check_balanced_schedule(self):
# 检查每个教师每天是否有相同数量的课程
balanced = True
for day in range(5):
num_courses = {}
for i in range(8):
num_courses[i] = 0
for i in range(day*8, (day+1)*8):
num_courses[i%8] += 1
for teacher in set([gene.teacher for gene in self.genes]):
num_teacher_courses = 0
for gene in self.genes:
if gene.teacher == teacher and gene.time//8 == day:
num_teacher_courses += 1
if len(num_courses.values()) != len(set(num_courses.values())):
balanced = False
break
if balanced:
return 1
else:
return 0
# 检查教室容量
def check_classroom_capacity(self):
# 检查每个教室在每个时间段是否能容纳该课程的学生人数
enough_capacity = True
for i in range(40):
if self.genes[i].course.num_students > self.genes[i].room.capacity:
enough_capacity = False
break
if enough_capacity:
return 1
else:
return 0
# 检查教师工作量
def check_teacher_workload(self):
# 检查每个教师一周的工作量是否超标
within_workload = True
for teacher in set([gene.teacher for gene in self.genes]):
num_courses = 0
for gene in self.genes:
if gene.teacher == teacher:
num_courses += 1
if num_courses > teacher.max_courses_per_week:
within_workload = False
break
if within_workload:
return 1
else:
return 0
```
上述代码中,我们定义了一个班级的排课类 `Schedule`,其中包含一个基因序列 `genes`,每个基因表示班级在某个时间段上什么课程、由哪个教师、在哪个教室上课。我们通过计算每个权重的得分来计算整个排课方案的适应度,权重的值可以根据实际情况进行调整。具体的权重分配方式和评估方法也可以根据具体需求进行调整。
阅读全文