kaggleGPU加速代码
时间: 2023-11-13 14:42:25 浏览: 119
在 Kaggle 上使用 GPU 加速可以大大提高深度学习的训练速度。以下是一些可以在 Kaggle 上使用的 GPU 加速代码:
1. 导入必要的库和环境设置:
```
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 设置 GPU 环境
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
```
2. 加载数据集:
```
train_df = pd.read_csv('/kaggle/input/train.csv')
test_df = pd.read_csv('/kaggle/input/test.csv')
```
3. 创建数据生成器:
```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
validation_split=0.2)
train_generator = train_datagen.flow_from_directory(
directory='/kaggle/input/train',
target_size=(224, 224),
batch_size=32,
class_mode='binary',
subset='training')
validation_generator = train_datagen.flow_from_directory(
directory='/kaggle/input/train',
target_size=(224, 224),
batch_size=32,
class_mode='binary',
subset='validation')
```
4. 构建模型:
```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
```
5. 训练模型:
```
history = model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
epochs=10,
validation_data=validation_generator,
validation_steps=validation_generator.samples // validation_generator.batch_size)
```
在 Kaggle 上使用 GPU 加速可以通过在 Notebook 设置中选择 GPU 作为加速器来实现。将代码运行在 GPU 上需要一些额外的时间,但是相比 CPU 加速会大大减少训练时间。
阅读全文