Hadoop实现矩阵相乘
时间: 2023-08-30 21:09:21 浏览: 78
大数据实验报告Hadoop编程实现MatrixMultiplication矩阵相乘程序附源码.doc
5星 · 资源好评率100%
Hadoop可以通过MapReduce框架来实现矩阵相乘,具体步骤如下:
1. 将矩阵A和矩阵B分别存储在HDFS中,并将它们进行分块,每个块的大小可以根据实际情况来确定。
2. 编写Map函数,将矩阵A和矩阵B的分块读入内存中,进行矩阵相乘操作,并将结果输出为键值对(key-value)的形式。其中,key表示输出矩阵的行和列,value表示矩阵相乘后的结果。
3. 编写Reduce函数,将Map函数输出的键值对进行合并,得到最终的矩阵相乘结果。
具体实现细节可以参考以下代码:
Map函数:
```
public static class MatrixMapper extends Mapper<LongWritable, Text, Text, Text> {
private Text outKey = new Text();
private Text outValue = new Text();
private int row = 0;
private int col = 0;
private int n = 0;
private String flag = "";
public void setup(Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
row = Integer.parseInt(conf.get("row"));
col = Integer.parseInt(conf.get("col"));
n = Integer.parseInt(conf.get("n"));
flag = conf.get("flag");
}
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] tokens = line.split(",");
if (flag.equals("A")) {
int i = Integer.parseInt(tokens[0]);
int j = Integer.parseInt(tokens[1]);
int v = Integer.parseInt(tokens[2]);
for (int k = 1; k <= n; k++) {
outKey.set(i + "," + k);
outValue.set("A," + j + "," + v);
context.write(outKey, outValue);
}
} else {
int j = Integer.parseInt(tokens[0]);
int k = Integer.parseInt(tokens[1]);
int v = Integer.parseInt(tokens[2]);
for (int i = 1; i <= row; i++) {
outKey.set(i + "," + k);
outValue.set("B," + j + "," + v);
context.write(outKey, outValue);
}
}
}
}
```
Reduce函数:
```
public static class MatrixReducer extends Reducer<Text, Text, Text, Text> {
private Text outValue = new Text();
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
int[] a = new int[n + 1];
int[] b = new int[n + 1];
for (Text value : values) {
String[] tokens = value.toString().split(",");
if (tokens[0].equals("A")) {
int j = Integer.parseInt(tokens[1]);
int v = Integer.parseInt(tokens[2]);
a[j] = v;
} else {
int j = Integer.parseInt(tokens[1]);
int v = Integer.parseInt(tokens[2]);
b[j] = v;
}
}
int sum = 0;
for (int i = 1; i <= n; i++) {
sum += a[i] * b[i];
}
outValue.set(String.valueOf(sum));
context.write(key, outValue);
}
}
```
调用MapReduce作业:
```
Configuration conf = new Configuration();
conf.set("row", String.valueOf(row));
conf.set("col", String.valueOf(col));
conf.set("n", String.valueOf(n));
Job job = Job.getInstance(conf, "MatrixMultiply");
job.setJarByClass(MatrixMultiply.class);
job.setMapperClass(MatrixMapper.class);
job.setReducerClass(MatrixReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
```
以上代码实现了矩阵相乘的MapReduce作业,其中参数row、col和n分别表示矩阵A的行数、矩阵B的列数和矩阵A的列数(也是矩阵B的行数)。
阅读全文