class MSMDAERNet(nn.Module): def init(self, pretrained=False, number_of_source=15, number_of_category=4): super(MSMDAERNet, self).init() self.sharedNet = pretrained_CFE(pretrained=pretrained) # for i in range(1, number_of_source): # exec('self.DSFE' + str(i) + '=DSFE()') # exec('self.cls_fc_DSC' + str(i) + '=nn.Linear(32,' + str(number_of_category) + ')') for i in range(number_of_source): exec('self.DSFE' + str(i) + '=DSFE()') exec('self.cls_fc_DSC' + str(i) + '=nn.Linear(32,' + str(number_of_category) + ')') def forward(self, data_src, number_of_source, data_tgt=0, label_src=0, mark=0): ''' description: take one source data and the target data in every forward operation. the mmd loss is calculated between the source data and the target data (both after the DSFE) the discrepency loss is calculated between all the classifiers' results (test on the target data) the cls loss is calculated between the ground truth label and the prediction of the mark-th classifier 之所以target data每一条线都要过一遍是因为要计算discrepency loss, mmd和cls都只要mark-th那条线就行 param {type}: mark: int, the order of the current source data_src: take one source data each time number_of_source: int label_Src: corresponding label data_tgt: target data return {type} ''' mmd_loss = 0 disc_loss = 0 data_tgt_DSFE = [] if self.training == True: # common feature extractor data_src_CFE = self.sharedNet(data_src) data_tgt_CFE = self.sharedNet(data_tgt) # Each domian specific feature extractor # to extract the domain specific feature of target data for i in range(number_of_source): DSFE_name = 'self.DSFE' + str(i) data_tgt_DSFE_i = eval(DSFE_name)(data_tgt_CFE) data_tgt_DSFE.append(data_tgt_DSFE_i) # Use the specific feature extractor # to extract the source data, and calculate the mmd loss DSFE_name = 'self.DSFE' + str(mark) data_src_DSFE = eval(DSFE_name)(data_src_CFE) # mmd_loss += utils.mmd(data_src_DSFE, data_tgt_DSFE[mark]) mmd_loss += utils.mmd_linear(data_src_DSFE, data_tgt_DSFE[mark]) # discrepency loss for i in range(len(data_tgt_DSFE)): if i != mark: disc_loss += torch.mean(torch.abs( F.softmax(data_tgt_DSFE[mark], dim=1) - F.softmax(data_tgt_DSFE[i], dim=1) )) # domain specific classifier and cls_loss DSC_name = 'self.cls_fc_DSC' + str(mark) pred_src = eval(DSC_name)(data_src_DSFE) cls_loss = F.nll_loss(F.log_softmax( pred_src, dim=1), label_src.squeeze()) return cls_loss, mmd_loss, disc_loss中data_tgt_DSFE的长度

时间: 2024-03-07 10:53:38 浏览: 18
data_tgt_DSFE 的长度是 number_of_source,也就是目标数据经过每个领域特定特征提取器后得到的特征向量的个数。在 forward 函数中,for 循环会遍历所有的领域特定特征提取器,将目标数据经过每个领域特定特征提取器后得到的特征向量存储在 data_tgt_DSFE 列表中,因此 data_tgt_DSFE 的长度就等于 number_of_source。
相关问题

class Net(nn.Module): def __init__(self):的理解

这段代码定义了一个 PyTorch 中的神经网络模型。具体地说,它定义了一个继承自 `nn.Module` 的类 `Net`,并在该类的 `__init__` 方法中定义了模型的结构。 在 PyTorch 中,所有的神经网络模型都必须继承自 `nn.Module` 类,并在其 `__init__` 方法中定义网络的层次结构。这个 `Net` 类的 `__init__` 方法中没有接受任何参数,因此这个模型的结构是固定的,不能根据不同的输入数据进行调整。 下面是一个示例,展示了如何在 `__init__` 方法中定义一个简单的神经网络模型: ```python import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 100) # 全连接层,输入维度为 10,输出维度为 100 self.relu = nn.ReLU() # ReLU 激活函数 self.fc2 = nn.Linear(100, 1) # 全连接层,输入维度为 100,输出维度为 1 def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x ``` 在这个例子中,我们定义了一个包含两个全连接层和一个 ReLU 激活函数的神经网络模型。在 `__init__` 方法中,我们定义了两个全连接层和一个 ReLU 激活函数,并将它们保存为类属性。这些层的参数是自动初始化的,不需要手动指定。 `forward` 方法定义了模型的前向传播过程。在这个例子中,我们按照顺序连接了两个全连接层和一个 ReLU 激活函数。`forward` 方法的输入参数 `x` 是一个张量,表示模型的输入数据。在前向传播过程中,我们将输入数据 `x` 进行一系列的线性变换和非线性变换,最终得到模型的输出结果。在这个例子中,我们的模型输出的是一个标量值。

class DQNAgent: def __init__(self, input_dim, output_dim, learning_rate=0.001, pretrained=True): self.network = DQN(input_dim, output_dim, pretrained=pretrained) self.target_network = DQN(input_dim, output_dim, pretrained=pretrained) self.buffer = ReplayBuffer(1000) self.optimizer = optim.Adam(self.network.parameters(), lr=learning_rate) self.criteria = nn.MSELoss() self.gamma = 0.9 self.epsilon = 0 self.epsilon_decay = 0.999 self.epsilon_min = 0.05 self.output_dim = output_dim

这是一个基于DQN算法的智能体(Agent)类。它的作用是实现一个DQN智能体,用于解决强化学习中的决策问题。主要有以下几个成员: 1. `__init__(self, input_dim, output_dim, learning_rate=0.001, pretrained=True)`:初始化方法,传入输入维度(input_dim)、输出维度(output_dim)、学习率(learning_rate)和是否使用预训练(pretrained)模型。在初始化过程中,它创建了两个DQN网络实例:self.network和self.target_network,以及一个经验回放缓冲区实例self.buffer。同时,它还定义了优化器(self.optimizer)和损失函数(self.criteria)。 2. `self.network = DQN(input_dim, output_dim, pretrained=pretrained)`:创建一个DQN网络实例,用于近似值函数的估计。该网络将输入维度(input_dim)和输出维度(output_dim)作为参数传入,并根据预训练(pretrained)标志来初始化模型参数。 3. `self.target_network = DQN(input_dim, output_dim, pretrained=pretrained)`:创建一个目标网络实例,用于计算目标Q值。与self.network类似,它也接受输入维度(input_dim)和输出维度(output_dim)作为参数,并根据预训练(pretrained)标志来初始化模型参数。 4. `self.buffer = ReplayBuffer(1000)`:创建一个经验回放缓冲区实例,用于存储智能体与环境之间的交互数据。它的容量为1000,可以根据需要进行调整。 5. `self.optimizer = optim.Adam(self.network.parameters(), lr=learning_rate)`:创建一个Adam优化器实例,用于更新网络参数。它的参数是self.network的可学习参数,学习率为learning_rate。 6. `self.criteria = nn.MSELoss()`:创建一个均方误差损失函数实例,用于计算值函数的误差。它将用于计算网络输出与目标Q值之间的差距。 7. `self.gamma = 0.9`:折扣因子,用于计算未来奖励的折现值。 8. `self.epsilon = 0`:ε-greedy策略中的ε值,用于探索与利用的权衡。 9. `self.epsilon_decay = 0.999`:ε值的衰减率,用于逐渐减小探索的概率。 10. `self.epsilon_min = 0.05`:ε值的最小值,探索的概率不会低于这个值。 11. `self.output_dim = output_dim`:输出维度。 该类将DQN算法的各个组件进行了封装,并提供了一些方法来实现智能体的训练和决策过程。

相关推荐

更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def init(self): super().init() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def init(self, channel, k_size=3): super(ECA_Module, self).init() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def init(self): super().init() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x,使最后输出为[16,1,50,50,]。

最新推荐

recommend-type

Google已经推出了Google VR SDK,

VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。