建立一个PSO类优化BP神经网络
时间: 2023-08-15 10:03:11 浏览: 92
很高兴回答你的问题!为了建立一个PSO类优化BP神经网络,我们需要以下步骤:
1. 导入必要的库和数据集
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import random
# 导入数据集
data = pd.read_csv('your_dataset.csv')
# 分离特征和标签
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
# 数据归一化
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
# 将标签转换为独热编码
y = pd.get_dummies(y).values
```
2. 初始化BP神经网络
```python
class BPNN:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.weights_ih = np.random.randn(self.input_size, self.hidden_size)
self.weights_ho = np.random.randn(self.hidden_size, self.output_size)
self.bias_h = np.random.randn(self.hidden_size)
self.bias_o = np.random.randn(self.output_size)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def forward(self, x):
self.hidden = self.sigmoid(np.dot(x, self.weights_ih) + self.bias_h)
self.output = self.sigmoid(np.dot(self.hidden, self.weights_ho) + self.bias_o)
return self.output
def backward(self, x, y, output):
self.output_error = y - output
self.output_delta = self.output_error * output * (1 - output)
self.hidden_error = np.dot(self.output_delta, self.weights_ho.T)
self.hidden_delta = self.hidden_error * self.hidden * (1 - self.hidden)
self.weights_ho += np.dot(self.hidden.T, self.output_delta)
self.weights_ih += np.dot(x.T, self.hidden_delta)
self.bias_o += np.sum(self.output_delta, axis=0)
self.bias_h += np.sum(self.hidden_delta, axis=0)
```
3. 初始化PSO算法
```python
class PSO:
def __init__(self, population_size, max_iter, input_size, hidden_size, output_size):
self.population_size = population_size
self.max_iter = max_iter
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.particles = np.zeros((self.population_size, self.input_size * self.hidden_size + self.hidden_size * self.output_size + self.hidden_size + self.output_size))
self.pbest = np.zeros((self.population_size, self.input_size * self.hidden_size + self.hidden_size * self.output_size + self.hidden_size + self.output_size))
self.gbest = np.zeros(self.input_size * self.hidden_size + self.hidden_size * self.output_size + self.hidden_size + self.output_size)
self.pbest_fitness = np.zeros(self.population_size)
self.gbest_fitness = np.inf
self.velocities = np.zeros((self.population_size, self.input_size * self.hidden_size + self.hidden_size * self.output_size + self.hidden_size + self.output_size))
self.bpnn = BPNN(self.input_size, self.hidden_size, self.output_size)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def fitness(self, particle):
self.bpnn.weights_ih = particle[:self.input_size * self.hidden_size].reshape(self.input_size, self.hidden_size)
self.bpnn.weights_ho = particle[self.input_size * self.hidden_size:(self.input_size * self.hidden_size + self.hidden_size * self.output_size)].reshape(self.hidden_size, self.output_size)
self.bpnn.bias_h = particle[(self.input_size * self.hidden_size + self.hidden_size * self.output_size):(self.input_size * self.hidden_size + self.hidden_size * self.output_size + self.hidden_size)]
self.bpnn.bias_o = particle[(self.input_size * self.hidden_size + self.hidden_size * self.output_size + self.hidden_size):]
output = self.bpnn.forward(X)
error = np.mean(np.abs(output - y))
return error
def update_velocities(self, w, c1, c2):
for i in range(self.population_size):
r1 = random.random()
r2 = random.random()
self.velocities[i] = w * self.velocities[i] + c1 * r1 * (self.pbest[i] - self.particles[i]) + c2 * r2 * (self.gbest - self.particles[i])
return self.velocities
def update_particles(self):
for i in range(self.population_size):
self.particles[i] = self.particles[i] + self.velocities[i]
if self.fitness(self.particles[i]) < self.pbest_fitness[i]:
self.pbest[i] = self.particles[i]
self.pbest_fitness[i] = self.fitness(self.particles[i])
if self.pbest_fitness[i] < self.gbest_fitness:
self.gbest = self.pbest[i]
self.gbest_fitness = self.pbest_fitness[i]
return self.particles
```
4. 运行PSO算法进行优化
```python
# 初始化PSO算法
pso = PSO(population_size=20, max_iter=100, input_size=X.shape[1], hidden_size=10, output_size=y.shape[1])
# 运行PSO算法
for i in range(pso.max_iter):
pso.update_velocities(w=0.8, c1=2, c2=2)
pso.update_particles()
# 获取最优参数
best_weights_ih = pso.gbest[:pso.input_size * pso.hidden_size].reshape(pso.input_size, pso.hidden_size)
best_weights_ho = pso.gbest[pso.input_size * pso.hidden_size:(pso.input_size * pso.hidden_size + pso.hidden_size * pso.output_size)].reshape(pso.hidden_size, pso.output_size)
best_bias_h = pso.gbest[(pso.input_size * pso.hidden_size + pso.hidden_size * pso.output_size):(pso.input_size * pso.hidden_size + pso.hidden_size * pso.output_size + pso.hidden_size)]
best_bias_o = pso.gbest[(pso.input_size * pso.hidden_size + pso.hidden_size * pso.output_size + pso.hidden_size):]
# 使用最优参数训练BP神经网络
bpnn = BPNN(input_size=X.shape[1], hidden_size=10, output_size=y.shape[1])
bpnn.weights_ih = best_weights_ih
bpnn.weights_ho = best_weights_ho
bpnn.bias_h = best_bias_h
bpnn.bias_o = best_bias_o
for i in range(10000):
output = bpnn.forward(X)
bpnn.backward(X, y, output)
```
以上就是建立一个PSO类优化BP神经网络的步骤,希望能对你有所帮助!
阅读全文