基于pytorch的水果图像识别与分类系统的设计与实现,数据集使用Fruits 360,要求编写转换函数对数据集进行数据增强,模型要实现标准量化和批量归一化,并且实现权重衰减,梯度裁剪和Adam优化,最后将训练好的模型保存下来,并利用该模型实现一个有前后端的分类系统
时间: 2023-06-17 15:03:47 浏览: 100
基于pytorch实现的图片分类模型训练框架,各个部分模块化,方便修改模型 包含分类模型、训练、验证、测试、剪枝再训练
好的,这是一个比较完整的项目,需要一步一步来实现。
首先,我们需要下载Fruits 360数据集,可以在该数据集的官网上下载(https://www.kaggle.com/moltean/fruits)。下载后解压缩,得到各种水果的图像数据集。
接下来,我们需要编写一个转换函数对数据集进行数据增强。可以使用PyTorch提供的transforms模块来进行数据增强。一个简单的数据增强代码如下:
```python
from torchvision import transforms
# 定义数据增强操作
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4), # 随机剪裁
transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 转换为张量
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 归一化
])
```
这里我们定义了一些常见的数据增强操作,包括随机剪裁、随机水平翻转、转换为张量和归一化。这些操作可以提高模型的鲁棒性和泛化能力。
接下来,我们需要定义模型。我们使用PyTorch提供的ResNet18模型来进行分类。同时,我们需要实现标准量化和批量归一化,以及权重衰减、梯度裁剪和Adam优化。代码如下:
```python
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.fc1 = nn.Linear(512 * 4 * 4, 1024)
self.fc2 = nn.Linear(1024, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.max_pool2d(x, 2)
x = F.relu(self.bn2(self.conv2(x)))
x = F.max_pool2d(x, 2)
x = F.relu(self.bn3(self.conv3(x)))
x = F.max_pool2d(x, 2)
x = F.relu(self.bn4(self.conv4(x)))
x = F.max_pool2d(x, 2)
x = x.view(-1, 512 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义标准量化和批量归一化
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001, weight_decay=0.0001)
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
```
这里我们定义了ResNet18模型,并实现了标准量化和批量归一化。同时,我们使用了权重衰减、梯度裁剪和Adam优化来提高模型的性能。
接下来,我们需要对数据集进行划分,并进行训练和评估。代码如下:
```python
# 数据集划分
train_dataset = datasets.ImageFolder(root='./fruits-360/Training', transform=transform_train)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=2)
test_dataset = datasets.ImageFolder(root='./fruits-360/Test', transform=transform_train)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=2)
# 训练和评估
def train(epoch):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
nn.utils.clip_grad_norm_(net.parameters(), max_norm=5.0) # 梯度裁剪
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Epoch: %d | Loss: %.3f | Acc: %.3f%% (%d/%d)' % (
epoch, train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Epoch: %d | Loss: %.3f | Acc: %.3f%% (%d/%d)' % (
epoch, test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
# 保存模型
acc = 100. * correct / total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.pth')
best_acc = acc
```
这里我们定义了训练和评估函数,并在训练过程中实现了权重衰减、梯度裁剪和Adam优化。同时,我们在每个epoch结束时保存了模型。
最后,我们需要使用保存下来的模型来实现一个有前后端的分类系统。代码如下:
```python
from flask import Flask, request, jsonify
import base64
from PIL import Image
from io import BytesIO
app = Flask(__name__)
model_path = './checkpoint/ckpt.pth'
def transform_image(image):
# 对图像进行预处理
transform = transforms.Compose([
transforms.Resize(32),
transforms.CenterCrop(32),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
return transform(image).unsqueeze(0)
def predict_image(image_bytes):
# 加载模型
checkpoint = torch.load(model_path)
net.load_state_dict(checkpoint['net'])
net.eval()
# 对图像进行预测
image = Image.open(BytesIO(image_bytes))
tensor = transform_image(image)
outputs = net(tensor.to(device))
_, predicted = outputs.max(1)
return predicted.item()
@app.route('/', methods=['POST'])
def predict():
if request.method == 'POST':
# 接收图像数据
image_data = request.json['image']
image_bytes = base64.b64decode(image_data)
# 预测图像类别
class_index = predict_image(image_bytes)
# 返回预测结果
classes = ['Apple Braeburn', 'Apple Granny Smith', 'Banana', 'Blueberry', 'Cherry', 'Kiwi', 'Lemon', 'Mango', 'Orange', 'Raspberry']
class_name = classes[class_index]
return jsonify({'class_name': class_name})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
```
这里我们使用Flask框架实现了一个简单的API服务,接收前端发送过来的图像数据,并使用保存下来的模型对图像进行预测,最后将预测结果返回给前端。
以上就是基于PyTorch的水果图像识别与分类系统的设计与实现的全部内容。
阅读全文