利用opencv实现照片的三维重建代码
时间: 2023-07-07 11:19:53 浏览: 176
基于opencv的三维重建代码
4星 · 用户满意度95%
好的,以下是一段利用 OpenCV 实现照片的三维重建的代码:
```python
import cv2
import numpy as np
# 读取左右两张照片
img_left = cv2.imread('left.jpg')
img_right = cv2.imread('right.jpg')
# 将照片转换为灰度图像
gray_left = cv2.cvtColor(img_left, cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(img_right, cv2.COLOR_BGR2GRAY)
# 使用SIFT算法获取关键点和描述符
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(gray_left, None)
kp2, des2 = sift.detectAndCompute(gray_right, None)
# 使用FLANN匹配器进行特征点匹配
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# 筛选出最佳匹配的特征点
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
# 获取匹配点的坐标
pts_left = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
pts_right = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
# 使用立体校正算法将两张照片进行校正
retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = \
cv2.stereoCalibrate([pts_left], [pts_right], gray_left.shape[::-1], None, None, None, None)
R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = \
cv2.stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, gray_left.shape[::-1], R, T)
# 使用双目视差计算算法获取深度信息
stereoMatcher = cv2.StereoSGBM_create(minDisparity=0, numDisparities=16, blockSize=15)
disparity = stereoMatcher.compute(gray_left, gray_right)
# 使用深度信息进行三维重建
points_3d = cv2.reprojectImageTo3D(disparity, Q)
# 将三维点云数据可视化
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(points_3d[..., 0], points_3d[..., 1], points_3d[..., 2], marker='.')
plt.show()
```
这段代码使用了 OpenCV 中的双目视差计算算法和立体校正算法,通过对两张照片进行校正和匹配,得到深度信息,并最终进行三维重建。在最后部分,将重建后的三维点云数据可视化。
阅读全文