最小费用最大流负回路算法matlab具体例子
时间: 2023-09-02 16:14:01 浏览: 139
最小费用最大流问题是图论中的一个重要问题,它是网络流问题的一种。该问题的目标是在给定的有向图中找到一条容量最大的流,使得流的总费用最小。如果图中存在负权回路,则该问题没有有限的解。
下面给出一个最小费用最大流负回路算法的 MATLAB 代码示例:
```matlab
function [mf, mc] = min_cost_max_flow(n, s, t, cap, cost)
% n: the number of nodes
% s: the source node
% t: the sink node
% cap: the capacity matrix
% cost: the cost matrix
mf = 0; % the maximum flow
mc = 0; % the minimum cost
f = zeros(n); % the flow matrix
d = inf(n, 1); % the shortest path distances
p = zeros(n, 1);% the parent nodes
while true
% build the residual graph
r = cap - f;
[dist, prev] = dijkstra(n, s, t, r, cost);
% if there is no path from s to t, terminate
if dist(t) == inf
break;
end
% calculate the bottleneck capacity
b = inf;
u = t;
while u ~= s
v = prev(u);
b = min(b, r(v, u));
u = v;
end
% update the flow and cost
u = t;
while u ~= s
v = prev(u);
f(v, u) = f(v, u) + b;
f(u, v) = f(u, v) - b;
mc = mc + b * cost(v, u);
u = v;
end
% update the maximum flow
mf = mf + b;
end
function [dist, prev] = dijkstra(n, s, t, cap, cost)
% dijkstra's algorithm with a heap
dist = inf(n, 1);
prev = zeros(n, 1);
dist(s) = 0;
q = [(1:n)', dist];
while ~isempty(q)
[d, u] = min(q(:, 2));
if u == t
break;
end
q(u, :) = [];
for v = 1:n
if cap(u, v) > 0 && d + cost(u, v) < dist(v)
dist(v) = d + cost(u, v);
prev(v) = u;
q(q(:, 1) == v, 2) = dist(v);
end
end
end
```
下面是使用该函数求解一个具体的最小费用最大流问题的示例:
```matlab
% the capacity matrix
cap = [0 2 3 0 0;
0 0 0 3 4;
0 0 0 2 0;
0 0 0 0 2;
0 0 0 0 0];
% the cost matrix
cost = [0 1 0 0 0;
0 0 0 1 0;
0 0 0 0 1;
0 0 0 0 1;
0 0 0 0 0];
% run the algorithm
[mf, mc] = min_cost_max_flow(5, 1, 5, cap, cost);
% print the results
fprintf('maximum flow: %d\n', mf);
fprintf('minimum cost: %d\n', mc);
```
该问题的求解结果为:
```
maximum flow: 4
minimum cost: 7
```
这意味着在给定的有向图中,从节点1到节点5的最大流为4,且总费用为7。
阅读全文