R-cnn源代码python
时间: 2023-07-01 16:18:22 浏览: 106
RCNN的Python源代码主要是基于Caffe框架实现的,以下是RCNN的Python源代码示例:
1. 数据预处理部分:
```python
import numpy as np
import os
import cv2
# 读取图像并进行预处理
def load_image(filename):
img = cv2.imread(filename)
img = img.astype(np.float32, copy=False)
# 图像缩放
img = cv2.resize(img, (224, 224))
# 图像减均值
img -= [104, 117, 123]
# 图像通道转换
img = img.transpose((2, 0, 1))
return img
```
2. 候选区域提取部分:
```python
import selectivesearch
# 使用选择性搜索算法提取候选区域
def selective_search(image, mode='fast'):
# 选择性搜索参数配置
ss = selectivesearch.selective_search(image, mode=mode)
# 提取候选区域
candidates = []
for e, (x, y, w, h) in enumerate(ss):
if w < 10 or h < 10:
continue
candidates.append((x, y, w, h))
return candidates
```
3. 特征提取部分:
```python
import caffe
# 加载模型和权重
def load_net(model_file, pretrained_file):
net = caffe.Net(model_file, pretrained_file, caffe.TEST)
return net
# 提取候选区域的特征
def extract_features(net, image, candidates):
features = []
for x, y, w, h in candidates:
# 裁剪候选区域并进行预处理
roi = image[:, y:y+h, x:x+w]
roi = cv2.resize(roi, (227, 227))
roi = roi - np.array([104, 117, 123])
# 将候选区域送入网络中进行前向传播
net.blobs['data'].reshape(1, 3, 227, 227)
net.blobs['data'].data[...] = roi
net.forward()
# 提取网络的特征表示
feat = net.blobs['fc7'].data[0].copy()
features.append(feat)
return features
```
4. 目标分类和定位部分:
```python
# 加载SVM模型
def load_svm_model(model_file):
svm_model = cv2.ml.SVM_load(model_file)
return svm_model
# 对候选区域进行分类和定位
def classify_and_locate(svm_model, features, candidates):
labels = []
bboxes = []
for i, feat in enumerate(features):
# 对特征进行分类
label = svm_model.predict(feat.reshape(1, -1))[1][0][0]
if label == 1:
# 如果分类为正样本,则进行定位
bbox = candidates[i]
bboxes.append(bbox)
labels.append(label)
return labels, bboxes
```
5. 非极大值抑制部分:
```python
# 非极大值抑制
def non_max_suppression(bboxes, overlap_threshold=0.3):
# 计算候选区域的面积
areas = [(x[2] - x[0] + 1) * (x[3] - x[1] + 1) for x in bboxes]
# 根据y坐标排序
idxs = np.argsort([x[1] for x in bboxes])
picked_idxs = []
# 对每个候选区域进行遍历
while len(idxs) > 0:
# 取出第一个候选区域
i = idxs[0]
picked_idxs.append(i)
# 计算与其重叠度最大的候选区域
overlaps = []
for j in idxs[1:]:
intersection = max(0, min(bboxes[i][2], bboxes[j][2]) - max(bboxes[i][0], bboxes[j][0])) \
* max(0, min(bboxes[i][3], bboxes[j][3]) - max(bboxes[i][1], bboxes[j][1]))
union = areas[i] + areas[j] - intersection
overlap = intersection / union
overlaps.append(overlap)
# 删除与其重叠度大于阈值的候选区域
idxs = np.delete(idxs, np.concatenate(([0], np.where(np.array(overlaps) > overlap_threshold)[0] + 1)))
# 返回最终的候选区域
bboxes = [bboxes[i] for i in picked_idxs]
return bboxes
```
以上就是RCNN的Python源代码示例,其中主要使用了OpenCV和Caffe两个库。这里的代码仅供参考,具体实现还需要根据具体的任务和数据进行相应的调整和优化。
阅读全文