python实现三角测量估计空间点位置(可调用OpenCV相关函数):给定一个相机不同角度拍摄的两张图像,其相机内参矩阵[[520.9,0,325.1],[0,521.0,249.7],[0,0,1]] 通过三角测量,估计出图像1中像素点(239,220)对应的空间点的位置
时间: 2023-06-08 10:09:12 浏览: 137
好的,让我来回答你的问题。关于python实现三角测量估计空间点位置,我们可以利用OpenCV库中的函数来完成。具体操作步骤如下:
1.导入相应的库
```python
import cv2
import numpy as np
```
2.设定相机参数
```python
K = np.array([ [520.9, 0, 325.1], [0, 521.0, 249.7], [0, 0, 1] ])
```
3.读取两张不同角度拍摄的图像,并进行特征点匹配
```python
img1 = cv2.imread('img1.jpg') # 读取图像1
img2 = cv2.imread('img2.jpg') # 读取图像2
orb = cv2.ORB_create() # 初始化ORB特征检测对象
kp1, des1 = orb.detectAndCompute(img1,None) # 检测图像1的特征点和描述符
kp2, des2 = orb.detectAndCompute(img2,None) # 检测图像2的特征点和描述符
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # 初始化BFMatcher对象
matches = bf.match(des1,des2) # 进行特征点匹配
matches = sorted(matches, key = lambda x:x.distance) # 根据匹配距离排序,取最优匹配点
```
4.计算相应特征点在两张图像中的坐标
```python
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = kp1[match.queryIdx].pt # 获取图像1中的特征点坐标
points2[i, :] = kp2[match.trainIdx].pt # 获取图像2中的特征点坐标
```
5.利用三角测量计算空间点位置
```python
# 利用OpenCV中的triangulatePoints函数进行三角测量
proj_mat1 = np.hstack((np.eye(3), np.zeros((3,1)))) # 前面的相机位于原点,因此R1=t1=0
proj_mat2 = np.hstack((np.eye(3), np.array([[-5.5], [0], [0]]))) # 后面的相机向x轴移动5.5个单位
assert points1.shape == points2.shape
H = np.eye(4)
H[0, 3] = -0.5 * K[0, 2]
H[1, 3] = -0.5 * K[1, 2]
H[0:3, 0:3] = K.copy()
pts4d_hom = cv2.triangulatePoints(proj_mat1, proj_mat2, points1.T, points2.T)
pts4d_hom /= pts4d_hom[3, :]
pts3d = pts4d_hom[:3, :].T
space_point = pts3d[239, 220] # 提取像素点(239, 220)对应的空间点
print(space_point)
```
至此,我们就可以得到图像1中像素点(239,220)对应的空间点的位置。如果你还有其他问题或者需求,可以继续向我提问。
阅读全文