import numpy as np import pylab as pl import pandas as pd import numpy as np from scipy.optimize import leastsq X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] X1=[i for i in range(1,24) for j in range(128)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] for i in X2: if X2.index(i)>2927: #两个单元楼的分隔数 x2.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] for i in X3: if X3.index(i)>2927: x3.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] for i in X4: if X4.index(i)>2927: x4.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] for i in X5: if X5.index(i)>2927: x5.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] for i in X6: if X6.index(i)>2927: x6.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] for i in X7: if X7.index(i)>2927: x7.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/66666.xlsx',header=0,usecols=(1,)) mylist1=df.values.tolist() room=[] for i in mylist1: room.append(i[0]) df=pd.read_excel('C:/Users/86147/OneDrive/文档/66666.xlsx',header=0,usecols=(2,)) mylist1=df.values.tolist() tomp=[] for i in mylist1: tomp.append(i[0]) Y=[] for i in range(1,185): room_tomp=zip(room,tomp) ls=[] for k,v in room_tomp: if k<=92: ls.append(v) for w in range(32): Y.append(ls[w])#通过循环y对应列表共有2944个数据 q=X1[:2922] w=X2[:2922] e=X3[:2922] r=X4[:2922] t=X5[:2922] p=X6[:2922] u=X7[:2922] x=np.column_stack((q,w,e,r,t,p,u)).T y=np.array(Y[:2922]).T # 定义待拟合的函数 def func(params, x, y): a1, a2, a3, a4, a5, a6, a7, b = paramsreturn a1 * x[:,0] + a2 * x[:,1] + a3 * x[:,2] + a4 * x[:,3] + a5 * x[:,4] + a6 * x[:,5] + a7 * x[:,6] + b - y # 求解参数 params0 = np.ones(8) # 初始参数 params, flag = leastsq(func, params0, args=(x, y)) # 求解参数 # 输出结果 print(f"a1: {params[0]}, a2: {params[1]}, a3: {params[2]}, a4: {params[3]}, a5: {params[4]}, a6: {params[5]}, a7: {params[6]}, b: {params[7]}")修改这个代码要求其可以准确的求出参数
时间: 2024-04-27 07:22:58 浏览: 116
vim-autoimport:Vim插件,用于在不使用LSP的情况下添加导入语句(适用于python等)
这段代码使用最小二乘法拟合了一个多元线性回归模型,其中每个自变量的系数需要通过拟合得到。为了准确地求出参数,你可以尝试以下几点:
1. 确认数据的准确性:检查读入的 Excel 文件是否正确,是否包含缺失值或异常值。
2. 调整模型:可以尝试增加或减少自变量的数量,或者对模型进行其他的调整。
3. 调整初始参数:可以尝试使用不同的初始参数,以便更好地搜索最优解。
4. 调整参数的约束条件:可以尝试添加参数的约束条件,如限制系数的范围或设置参数之间的关系等,以便更好地控制拟合结果。
阅读全文