matlab多目标遗传算法代码
时间: 2023-07-24 19:04:54 浏览: 81
高分项目,基于Matlab开发实现的多目标遗传算法(NSGA-III),内含完整源码+讲解视频
以下是一个简单的 Matlab 多目标遗传算法代码示例:
```matlab
%% 多目标优化函数
function [y1, y2] = MO_func(x)
y1 = sin(x(1));
y2 = cos(x(2));
end
%% 多目标遗传算法主体
pop_size = 100; % 种群大小
n_var = 2; % 变量个数
n_obj = 2; % 目标个数
n_gen = 50; % 迭代次数
lower_bound = [-5, -5]; % 变量下界
upper_bound = [5, 5]; % 变量上界
pop = rand(pop_size, n_var) .* (upper_bound - lower_bound) + lower_bound; % 初始化种群
for i = 1:n_gen
% 计算每个个体的适应度
for j = 1:pop_size
[y1(j), y2(j)] = MO_func(pop(j,:));
end
% 基于非支配排序的选择操作
fronts = nondominated_sort([y1', y2']);
new_pop = [];
front_idx = 1;
while size(new_pop, 1) + size(fronts{front_idx}, 1) <= pop_size
new_pop = [new_pop; pop(fronts{front_idx}, :)];
front_idx = front_idx + 1;
end
% 用拥挤度距离选择剩余的个体
if size(new_pop, 1) < pop_size
remaining = pop(setdiff(1:pop_size, fronts{1}), :);
distances = crowding_distance([y1(fronts{1}), y2(fronts{1})]);
[~, idx] = sort(distances, 'descend');
new_pop = [new_pop; remaining(idx(1:pop_size-size(new_pop, 1)), :)];
end
% 基于交叉和变异的操作进行种群更新
pop = crossover_mutation(new_pop);
end
%% 非支配排序
function fronts = nondominated_sort(obj_values)
[n, m] = size(obj_values);
fronts = cell(n, 1);
S = cell(n, 1);
n_dom = zeros(n, 1);
rank = zeros(n, 1);
for i = 1:n
S{i} = [];
n_dom(i) = 0;
for j = 1:n
if all(obj_values(i,:) <= obj_values(j,:)) && any(obj_values(i,:) < obj_values(j,:))
S{i} = [S{i}, j];
elseif all(obj_values(j,:) <= obj_values(i,:)) && any(obj_values(j,:) < obj_values(i,:))
n_dom(i) = n_dom(i) + 1;
end
end
if n_dom(i) == 0
rank(i) = 1;
fronts{1} = [fronts{1}, i];
end
end
front_idx = 1;
while ~isempty(fronts{front_idx})
next_front = [];
for i = fronts{front_idx}
for j = S{i}
n_dom(j) = n_dom(j) - 1;
if n_dom(j) == 0
rank(j) = front_idx + 1;
next_front = [next_front, j];
end
end
end
front_idx = front_idx + 1;
fronts{front_idx} = next_front;
end
end
%% 拥挤度距离
function distances = crowding_distance(obj_values)
[n, m] = size(obj_values);
distances = zeros(n, 1);
for i = 1:m
[~, idx] = sort(obj_values(:,i));
distances(idx(1)) = Inf;
distances(idx(end)) = Inf;
for j = 2:n-1
distances(idx(j)) = distances(idx(j)) + (obj_values(idx(j+1),i) - obj_values(idx(j-1),i));
end
end
end
%% 交叉和变异
function new_pop = crossover_mutation(old_pop)
[pop_size, n_var] = size(old_pop);
new_pop = zeros(pop_size, n_var);
for i = 1:pop_size
parent1 = old_pop(randi(pop_size), :);
parent2 = old_pop(randi(pop_size), :);
child = crossover(parent1, parent2);
child = mutation(child);
new_pop(i, :) = child;
end
end
function child = crossover(parent1, parent2)
alpha = rand(1);
child = alpha * parent1 + (1 - alpha) * parent2;
end
function child = mutation(parent)
n_var = length(parent);
child = parent;
for i = 1:n_var
if rand() < 0.1
child(i) = rand() * (upper_bound(i) - lower_bound(i)) + lower_bound(i);
end
end
end
```
该代码实现了一个简单的二维多目标优化函数(sin 和 cos 函数),使用基于非支配排序和拥挤度距离的多目标遗传算法进行优化。你可以将 `MO_func` 函数替换为你自己的优化函数,并根据需要更改算法参数和操作。
阅读全文