TransC算法中损失函数换为分类损失函数的代码
时间: 2023-06-13 14:09:00 浏览: 110
TransC算法中的损失函数是基于距离度量的,为了将其转化为分类损失函数,我们可以将每个关系对应到一个类别,并使用交叉熵损失函数进行训练。
以下是将TransC算法中的损失函数替换为分类损失函数的Python代码示例:
```python
import torch
import torch.nn as nn
class TransC(nn.Module):
def __init__(self, num_entities, num_relations, embedding_dim, margin):
super(TransC, self).__init__()
self.entity_embeddings = nn.Embedding(num_entities, embedding_dim)
self.relation_embeddings = nn.Embedding(num_relations, embedding_dim)
self.projection_matrices = nn.Embedding(num_relations, embedding_dim * embedding_dim)
self.margin = margin
def forward(self, heads, relations, tails):
# Look up embeddings for head, relation, and tail entities
head_embeddings = self.entity_embeddings(heads)
relation_embeddings = self.relation_embeddings(relations)
tail_embeddings = self.entity_embeddings(tails)
projection_matrix = self.projection_matrices(relations).view(-1, embedding_dim, embedding_dim)
# Project head and tail embeddings into the relation-specific subspace
head_embeddings = torch.matmul(head_embeddings.unsqueeze(1), projection_matrix).squeeze(1)
tail_embeddings = torch.matmul(tail_embeddings.unsqueeze(1), projection_matrix).squeeze(1)
# Compute distance between projected head and tail embeddings
distance = torch.norm(head_embeddings + relation_embeddings - tail_embeddings, dim=1)
# Compute classification loss using cross-entropy
target = torch.zeros_like(distance, dtype=torch.long)
target[distance > margin] = 1
loss = nn.CrossEntropyLoss()(distance, target)
return loss
```
在上面的代码中,我们使用`nn.CrossEntropyLoss`作为分类损失函数,并根据距离值将目标标签设置为0或1。在训练过程中,我们可以使用标准的反向传播算法来更新模型参数,以最小化分类损失函数。
阅读全文