帮写游览长隆世界动物园最佳旅游路线的代码
时间: 2024-05-13 15:07:58 浏览: 169
好的,我可以为你提供一个基于 Python 的简单游览长隆世界动物园最佳旅游路线的代码。在这个代码中,我们将使用广度优先搜索算法(BFS)来查找最短路线。
首先,我们需要定义一些变量和数据结构:
```python
# 地图
map = {
"入口": {"海洋王国", "欢乐世界"},
"欢乐世界": {"入口", "动物世界", "百鸟园", "熊猫馆"},
"海洋王国": {"入口", "海狮湾", "海豚湾", "极地海洋馆"},
"动物世界": {"欢乐世界", "大象馆", "狮虎山"},
"百鸟园": {"欢乐世界", "孔雀园", "鹦鹉馆"},
"熊猫馆": {"欢乐世界", "熊猫剧场"},
"海狮湾": {"海洋王国"},
"海豚湾": {"海洋王国"},
"极地海洋馆": {"海洋王国"},
"大象馆": {"动物世界"},
"狮虎山": {"动物世界"},
"孔雀园": {"百鸟园"},
"鹦鹉馆": {"百鸟园"},
"熊猫剧场": {"熊猫馆"}
}
# 起点和终点
start = "入口"
end = "海狮湾"
```
接下来,我们可以定义 BFS 算法来找到最短路线:
```python
from collections import deque
# BFS 算法
def bfs(graph, start, end):
# 用来记录访问过的节点
visited = set()
# 用来存储每个节点的前驱节点,便于最后回溯路径
predecessor = dict()
# 用来存储每个节点到起点的距离
distance = dict()
# 初始化起点信息
queue = deque()
visited.add(start)
predecessor[start] = None
distance[start] = 0
queue.append(start)
# 开始搜索
while queue:
node = queue.popleft()
for neighbor in graph[node]:
if neighbor not in visited:
visited.add(neighbor)
predecessor[neighbor] = node
distance[neighbor] = distance[node] + 1
if neighbor == end:
# 找到目标节点,回溯路径
path = []
while neighbor:
path.append(neighbor)
neighbor = predecessor[neighbor]
path.reverse()
return path, distance[end]
queue.append(neighbor)
# 没有找到路径
return None, None
```
最后,我们可以调用 BFS 函数来查找最短路线:
```python
path, distance = bfs(map, start, end)
if path:
print("最短路线为:", "->".join(path))
print("最短距离为:", distance)
else:
print("没有找到路径。")
```
完整代码如下所示:
```python
from collections import deque
# 地图
map = {
"入口": {"海洋王国", "欢乐世界"},
"欢乐世界": {"入口", "动物世界", "百鸟园", "熊猫馆"},
"海洋王国": {"入口", "海狮湾", "海豚湾", "极地海洋馆"},
"动物世界": {"欢乐世界", "大象馆", "狮虎山"},
"百鸟园": {"欢乐世界", "孔雀园", "鹦鹉馆"},
"熊猫馆": {"欢乐世界", "熊猫剧场"},
"海狮湾": {"海洋王国"},
"海豚湾": {"海洋王国"},
"极地海洋馆": {"海洋王国"},
"大象馆": {"动物世界"},
"狮虎山": {"动物世界"},
"孔雀园": {"百鸟园"},
"鹦鹉馆": {"百鸟园"},
"熊猫剧场": {"熊猫馆"}
}
# 起点和终点
start = "入口"
end = "海狮湾"
# BFS 算法
def bfs(graph, start, end):
# 用来记录访问过的节点
visited = set()
# 用来存储每个节点的前驱节点,便于最后回溯路径
predecessor = dict()
# 用来存储每个节点到起点的距离
distance = dict()
# 初始化起点信息
queue = deque()
visited.add(start)
predecessor[start] = None
distance[start] = 0
queue.append(start)
# 开始搜索
while queue:
node = queue.popleft()
for neighbor in graph[node]:
if neighbor not in visited:
visited.add(neighbor)
predecessor[neighbor] = node
distance[neighbor] = distance[node] + 1
if neighbor == end:
# 找到目标节点,回溯路径
path = []
while neighbor:
path.append(neighbor)
neighbor = predecessor[neighbor]
path.reverse()
return path, distance[end]
queue.append(neighbor)
# 没有找到路径
return None, None
# 查找最短路线
path, distance = bfs(map, start, end)
if path:
print("最短路线为:", "->".join(path))
print("最短距离为:", distance)
else:
print("没有找到路径。")
```
希望这个代码能够帮助你规划游览长隆世界动物园的最佳旅游路线!
阅读全文