这段代码是什么布尔运算:df.set_index(['time','id'],drop=False,inplace=True) df=df[~df.index.duplicated()] df.set_index(['time'],drop=False,inplace=True) df['dayofweek'] = df.index.dayofweek df['day'] = df.index.day df['hour'] = df.index.hour new = df["id"].str.split(".", expand = True) df['highway']=new[0] df['direction_code']=new[1] df['direction_dist']=pd.to_numeric(new[2])
时间: 2023-10-08 09:14:31 浏览: 113
这段代码中没有涉及到布尔运算,它是一系列DataFrame数据集df的操作。具体而言,这段代码的作用是:
1. 将DataFrame数据集df的索引设置为两列,分别是'time'和'id'列,并且保留这两列:`df.set_index(['time','id'],drop=False,inplace=True)`
2. 去除索引中的重复行:`df=df[~df.index.duplicated()]`
3. 将DataFrame数据集df的索引设置为'time'列,并且保留'time'列:`df.set_index(['time'],drop=False,inplace=True)`
4. 添加一个新的列'dayofweek',其值为索引中的星期几信息:`df['dayofweek'] = df.index.dayofweek`
5. 添加一个新的列'day',其值为索引中的日期信息:`df['day'] = df.index.day`
6. 添加一个新的列'hour',其值为索引中的小时信息:`df['hour'] = df.index.hour`
7. 将'id'列中的字符串按照"."进行分割,并将分割后的结果作为新的列添加到数据集df中:`new = df["id"].str.split(".", expand = True)`
8. 添加一个新的列'highway',其值为'id'列中分割后的第一部分:`df['highway']=new[0]`
9. 添加一个新的列'direction_code',其值为'id'列中分割后的第二部分:`df['direction_code']=new[1]`
10. 将'id'列中分割后的第三部分转换为数值类型,并添加到数据集df中作为新的列'direction_dist':`df['direction_dist']=pd.to_numeric(new[2])`
阅读全文