基于遗传算法航班优化代码
时间: 2023-08-23 14:04:41 浏览: 169
遗传算法可以用于航班优化问题,以下是一个基于遗传算法的航班优化代码示例:
```python
import random
# 航班信息(起飞时间、到达时间、出发地、目的地)
flights = [('BA001', '08:00', '10:00', 'LHR', 'JFK'),
('BA002', '12:00', '14:00', 'JFK', 'LHR'),
('BA003', '09:00', '12:00', 'LHR', 'CDG'),
('BA004', '11:00', '14:00', 'CDG', 'LHR'),
('BA005', '10:00', '12:00', 'LHR', 'FRA'),
('BA006', '13:00', '15:00', 'FRA', 'LHR'),
('BA007', '10:00', '13:00', 'LHR', 'MAD'),
('BA008', '14:00', '17:00', 'MAD', 'LHR'),
('BA009', '11:00', '13:00', 'LHR', 'AMS'),
('BA010', '14:00', '16:00', 'AMS', 'LHR')]
# 目标函数,评估航班安排的优劣
def fitness(solution):
total_time = 0
for i in range(len(solution)-1):
flight1 = flights[solution[i]]
flight2 = flights[solution[i+1]]
if flight1[3] != flight2[2]:
total_time += 2 # 转机时间为2小时
total_time += (int(flight2[2][:2]) - int(flight1[1][:2])) # 飞行时间
return -total_time # 目标是最小化总时间
# 遗传算法
def genetic_algorithm(population_size, fitness_func, gene_size, generation_num):
# 初始化种群
population = [[i for i in range(gene_size)] for _ in range(population_size)]
for i in range(population_size):
random.shuffle(population[i])
# 迭代
for generation in range(generation_num):
# 评估种群
scores = [fitness_func(solution) for solution in population]
# 选择
elites = []
for i in range(population_size // 5): # 选择前20%的精英个体
max_index = scores.index(max(scores))
elites.append(population[max_index])
del population[max_index]
del scores[max_index]
# 交叉
for i in range(population_size - len(elites)):
parent1 = random.choice(population)
parent2 = random.choice(population)
child = [0] * gene_size
start = random.randint(0, gene_size-1)
end = random.randint(start, gene_size-1)
child[start:end+1] = parent1[start:end+1]
for j in range(gene_size):
if parent2[j] not in child:
for k in range(gene_size):
if child[k] == 0:
child[k] = parent2[j]
break
population.append(child)
# 精英保留策略
population = elites + population[:population_size-len(elites)]
# 返回最优解
scores = [fitness_func(solution) for solution in population]
max_index = scores.index(max(scores))
return population[max_index]
# 调用遗传算法寻找最优解
solution = genetic_algorithm(population_size=100, fitness_func=fitness, gene_size=len(flights), generation_num=1000)
print(solution)
```
在上面的代码中,我们定义了一个航班信息列表 `flights`,每个元素包含航班号、起飞时间、到达时间、出发地和目的地。然后定义了一个目标函数 `fitness`,用于评估航班安排的优劣,目标是最小化总时间。接着定义了一个遗传算法函数 `genetic_algorithm`,其中包括种群初始化、迭代、选择、交叉和精英保留策略等操作。最后调用遗传算法函数寻找最优解,并将结果打印出来。
需要注意的是,这只是一个简单的示例代码,实际应用中还需要考虑诸如航班延误、航班取消等情况,以及更加复杂的约束条件和目标函数。
阅读全文