public Hashtable(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal Load: "+loadFactor); if (initialCapacity==0) initialCapacity = 1; this.loadFactor = loadFactor; table = new Entry<?,?>[initialCapacity]; threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1); } 解释一下这每一行代码是在干什么

时间: 2024-02-14 13:20:43 浏览: 27
这段代码是 Java 中 Hashtable 类的构造函数。它接受两个参数:initialCapacity 和 loadFactor。下面是每一行代码的作用: 1. 如果传入的 initialCapacity 小于 0,就抛出 IllegalArgumentException 异常,提示传入的初始容量非法。 2. 如果传入的 loadFactor 小于等于 0,或者为 NaN,就抛出 IllegalArgumentException 异常,提示传入的加载因子非法。 3. 如果 initialCapacity 等于 0,就将其设置为 1。 4. 将 loadFactor 赋值给对象的 loadFactor 属性。 5. 创建一个长度为 initialCapacity 的数组 table,用于存储 Hashtable 中的元素。 6. 计算并设置阈值 threshold。阈值是 Hashtable 中元素数量的上限,当元素数量达到阈值时,Hashtable 会自动扩容。threshold 的值取决于 initialCapacity 和 loadFactor,但最大值不能超过 MAX_ARRAY_SIZE + 1。
相关问题

class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { unordered_map<int, int> hashtable; for (int i = 0; i < nums.size(); ++i) { auto it = hashtable.find(target - nums[i]); if (it != ha

shh...我明白了。你的第一个问题是关于给定一个整数数组和一个目标值,如何找到数组中两个数的和等于目标值的索引。 对于这个问题,你可以使用哈希表来解决。首先,创建一个哈希表用于存储数组中的元素和它们对应的索引。然后,遍历数组中的每个元素,对于当前元素 nums[i],查找哈希表中是否存在 target - nums[i] 的键。如果存在,则说明找到了两个数的和等于目标值,返回它们的索引。如果不存在,则将当前元素及其索引添加到哈希表中。这样,当遍历到数组中的某个元素时,可以通过哈希表快速查找与之匹配的另一个数。 下面是一个示例实现: ```cpp #include <vector> #include <unordered_map> class Solution { public: std::vector<int> twoSum(std::vector<int>& nums, int target) { std::unordered_map<int, int> hashtable; for (int i = 0; i < nums.size(); ++i) { auto it = hashtable.find(target - nums[i]); if (it != hashtable.end()) { return {it->second, i}; } hashtable[nums[i]] = i; } return {}; } }; ``` 希望这个解决方案对你有帮助!如果你有更多问题,请随时问我。

unordered_map<int, int> hashtable;中<int, int> 是什么意思?

"<, int>" 表示定义了一个 key 和 value 都是 int 类型的 unordered_map。具体来说,unordered_map 是 C++ STL 中的一个容器,可以用于存储一系列的键值对,其中每个键(key)都唯一对应一个值(value)。在这个例子中,我们用 int 类型的键来索引 int 类型的值,这样就可以根据键快速地查找对应的值。

相关推荐

<--- Last few GCs ---> [11584:0000020B71203B50] 69329 ms: Scavenge (reduce) 2037.9 (2050.3) -> 2037.3 (2051.3) MB, 6.3 / 0.0 ms (average mu = 0.348, current mu = 0.419) allocation failure [11584:0000020B71203B50] 69339 ms: Scavenge (reduce) 2038.2 (2053.3) -> 2037.6 (2053.3) MB, 3.2 / 0.0 ms (average mu = 0.348, current mu = 0.419) allocation failure [11584:0000020B71203B50] 69348 ms: Scavenge (reduce) 2038.3 (2050.5) -> 2038.1 (2052.0) MB, 3.3 / 0.0 ms (average mu = 0.348, current mu = 0.419) allocation failure 12: 00007FF6482BAB44 v8::internal::FactoryBase<v8::internal::Factory>::NewFixedArrayWithFiller+84 13: 00007FF6482BAE43 v8::internal::FactoryBase<v8::internal::Factory>::NewFixedArrayWithMap+35 14: 00007FF6480C8A10 v8::internal::HashTable<v8::internal::NameDictionary,v8::internal::NameDictionaryShape>::EnsureCapacity<v8::internal::Isolate>+208 15: 00007FF6480C6086 v8::internal::Dictionary<v8::internal::NameDictionary,v8::internal::NameDictionaryShape>::Add<v8::internal::Isolate>+102 16: 00007FF6480CF346 v8::internal::BaseNameDictionary<v8::internal::NameDictionary,v8::internal::NameDictionaryShape>::Add+118 17: 00007FF647FC430C v8::internal::Runtime::GetObjectProperty+2204 18: 00007FF64848B50D v8::internal::SetupIsolateDelegate::SetupHeap+463949 19: 00007FF6485017A9 v8::internal::SetupIsolateDelegate::SetupHeap+947945 20: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 21: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 22: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 23: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 24: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 25: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 26: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 27: 0000028E519B08BF

#include<vector> #include<iostream> #define NULLKEY - 32768 using namespace std; class HashTable { public: HashTable(int n); ~HashTable(); void InsertHash(int key);//插入关键字进散列表 int SearchHash(int key);//查找关键字 void Show();//显示散列表 private: int Hash(int key);//散列函数 vector<int> elem;//数据元素 int count;//当前数据元素个数 int m;//散列表长度 }; HashTable::HashTable(int n = 30) :count(0), m(n) { for (int i = 0; i < n; i++) { elem.push_back(NULLKEY); } } HashTable::~HashTable() { } int HashTable::Hash(int key)//散列函数 { return key % m;//除留余数法 } void HashTable::InsertHash(int key)//插入关键字进散列表 { int addr = Hash(key); while (NULLKEY != elem[addr]) { addr = (addr + 1) % key; } elem[addr] = key; count++; } int HashTable::SearchHash(int key)//查找关键字 { int addr = Hash(key); while (elem[addr] != key) { addr = (addr + 1) % m; if (NULLKEY == elem[addr] || Hash(key) == addr) { return -1; } } return addr; } void HashTable::Show()//显示散列表 { for (int i = 0; i < m; i++) { cout << elem[i] << " "; } cout << endl; } int main() { int n, e, val; vector<int> vec; cout << "输入数据元素个数:"; cin >> n; cout << "输入数据元素:" << endl; for (int i = 0; i < n; i++) { cin >> e; vec.push_back(e); } HashTable H(n); for (int i = 0; i < n; i++) H.InsertHash(vec[i]); cout << "散列表:" << endl; H.Show(); cout << "输入要查找的数据元素:"; cin >> val; e = H.SearchHash(val); if (-1 == e) cout << "查找失败" << endl; else cout << "查找的数据元素在散列表中的位置下标:" << e << endl; system("pause"); return 0; }对这个代码进行注释

#include <iostream> #include <ctime> using namespace std; struct userNode { int key; bool sex; int birthday; struct userNode *next = NULL; }; userNode *HashTable[288]; int Hash(int key) { int res = 0; while (key) { res += key % 100; key /= 100; } return res - 10; } userNode *Login(int key) { int afterHash = Hash(key); userNode *p = HashTable[afterHash]; while (p && p->key != key) { p = p->next; } if (p && (p->key == key)) { return p; } else { return NULL; } return NULL; } int Register(userNode *newUser) { int afterHash = Hash(newUser->key); // userNode p = HashTable[afterHash]; // while (p) // { // p = p->next; // } newUser->next = HashTable[afterHash]; HashTable[afterHash] = newUser; return 0; } int main() { userNode nowTmp; int tmp; while (1) { system("cls"); cout << "请输入你的PP号:" << endl; tmp=0; while (tmp<100000 || tmp>999999) { cin >> tmp; } nowTmp = Login(tmp); if (nowTmp) { system("cls"); cout << "-------------------------------------------" << endl << "| 登录成功! |" << endl << "| PP号:" << nowTmp->key << " |" << endl << "| 性别:" << (nowTmp->sex ? "男" : "女") << " |" << endl << "| 生日:" << nowTmp->birthday << " |" << endl << "-------------------------------------------" << endl; system("pause"); } else { // 自动注册 srand(time(0)); nowTmp = new userNode; nowTmp->key=tmp; nowTmp->birthday= 2002 + rand() % 21; nowTmp->birthday=100; nowTmp->birthday+= 1 + rand() % 12; nowTmp->birthday=100; nowTmp->birthday+= 1 + rand() % 28; nowTmp->sex= rand() % 2; Register(nowTmp); cout << "这个PP号还没注册!帮你注册了!请重新登录!" << endl; system("pause"); } } //散列情况展示部分 // int a[288]; // for (int i = 0; i <= 287; i++) // { // a[i]=0; // } // for (int i = 100000; i <= 999999; i++) // { // a[Hash(i)]++; // } // for (int i = 0; i <= 287; i++) // { // cout<<"a["<<i<<"]="<<a[i]<<endl; // } return 0; }写注释

std::vector<std::vector<int>> LidarObjectSeg::Run(const pcl::PointCloud::Ptr &inCloud) const { if (inCloud->empty()) return {}; std::vector<std::array<double, 3>> gridPoints; GridParam gridParam = this->EstimateGridParam(inCloud, gridPoints); std::multimap<int, int> hashTable = this->UpdateHashTable(gridPoints, gridParam); std::vector<int> clusterIndices(inCloud->size(), -1); int curClusterIdx = 0; START_HOST_TIMING(ExtractClusters) for (std::size_t i = 0; i < inCloud->size(); ++i) { if (clusterIndices[i] >= 0) continue; const auto &curGridPoint = gridPoints[i]; std::vector<int> neighborIndices = this->GetNeighbors(curGridPoint, gridParam, hashTable); for (int neighborIdx : neighborIndices) { if (neighborIdx == i) continue; int curPointVoxelIdx = clusterIndices[i]; int neighborVoxelIdx = clusterIndices[neighborIdx]; if (curPointVoxelIdx >= 0 && neighborVoxelIdx >= 0) { if (curPointVoxelIdx != neighborVoxelIdx) this->MergeClusters(clusterIndices, curPointVoxelIdx, neighborVoxelIdx); } else { if (curPointVoxelIdx < 0) clusterIndices[i] = neighborVoxelIdx; else clusterIndices[neighborIdx] = curPointVoxelIdx; } } if (clusterIndices[i] < 0 && neighborIndices.size() >= numMinPoints_) { for (int neighborIdx : neighborIndices) { clusterIndices[neighborIdx] = curClusterIdx; } curClusterIdx++; } } STOP_HOST_TIMING(ExtractClusters) START_HOST_TIMING(GetAllClusters) std::vector<std::vector<int>> allClusters = this->GetAllClusters(clusterIndices); STOP_HOST_TIMING(GetAllClusters) PRINT_ALL_TIMING() return allClusters; }

最新推荐

recommend-type

HashMap和HashTable底层原理以及常见面试题

HashMap和HashTable底层原理以及常见面试题 HashMap和HashTable是Java中两个常用的数据结构,都是基于哈希表实现的,但它们之间存在着一些关键的区别。本文将深入探讨HashMap和HashTable的底层原理,并总结常见的...
recommend-type

C#中哈希表(HashTable)用法实例详解(添加/移除/判断/遍历/排序等)

int age = (int)hashtable["年龄"]; Console.WriteLine(age); } } ``` 5. **类型转换和异常处理** 当从`HashTable`中获取数据时,需要进行适当的类型转换。如果类型不匹配,会抛出`InvalidCastException`。...
recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。